SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Liu G) ;hsvcat:4"

Search: WFRF:(Liu G) > Agricultural Sciences

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Groenen, M. A., et al. (author)
  • Analyses of pig genomes provide insight into porcine demography and evolution
  • 2012
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 491:7424, s. 393-398
  • Journal article (peer-reviewed)abstract
    • For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars approximately 1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.
  •  
2.
  • Sarà, G., et al. (author)
  • The Synergistic Impacts of Anthropogenic Stressors and COVID-19 on Aquaculture : A Current Global Perspective
  • 2022
  • In: Reviews in Fisheries Science & Aquaculture. - : Informa UK Limited. - 2330-8249 .- 2330-8257. ; 30:1, s. 123-135
  • Journal article (peer-reviewed)abstract
    • The rapid, global spread of COVID-19, and the measures intended to limit or slow its propagation, are having major impacts on diverse sectors of society. Notably, these impacts are occurring in the context of other anthropogenic-driven threats including global climate change. Both anthropogenic stressors and the COVID-19 pandemic represent significant economic challenges to aquaculture systems across the globe, threatening the supply chain of one of the most important sources of animal protein, with potential disproportionate impacts on vulnerable communities. A web survey was conducted in 47 countries in the midst of the COVID-19 pandemic to assess how aquaculture activities have been affected by the pandemic, and to explore how these impacts compare to those from climate change. A positive correlation between the effects of the two categories of drivers was detected, but analysis suggests that the pandemic and the anthropogenic stressors affect different parts of the supply chain. The immediate measurable reported losses varied with aquaculture typology (land vs. marine, and intensive vs. extensive). A comparably lower impact on farmers reporting the use of integrated multitrophic aquaculture (IMTA) methods suggests that IMTA might enhance resilience to multiple stressors by providing different market options under the COVID-19 pandemic. Results emphasize the importance of assessing detrimental effects of COVID-19 under a multiple stressor lens, focusing on areas that have already locally experienced economic loss due to anthropogenic stressors in the last decade. Holistic policies that simultaneously address other ongoing anthropogenic stressors, rather than focusing solely on the acute impacts of COVID-19, are needed to maximize the long-term resilience of the aquaculture sector. 
  •  
3.
  • Wade, C. M., et al. (author)
  • Genome Sequence, Comparative Analysis, and Population Genetics of the Domestic Horse
  • 2009
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 326:5954, s. 865-867
  • Journal article (peer-reviewed)abstract
    • We report a high-quality draft sequence of the genome of the horse ( Equus caballus). The genome is relatively repetitive but has little segmental duplication. Chromosomes appear to have undergone few historical rearrangements: 53% of equine chromosomes show conserved synteny to a single human chromosome. Equine chromosome 11 is shown to have an evolutionary new centromere devoid of centromeric satellite DNA, suggesting that centromeric function may arise before satellite repeat accumulation. Linkage disequilibrium, showing the influences of early domestication of large herds of female horses, is intermediate in length between dog and human, and there is long-range haplotype sharing among breeds.
  •  
4.
  • Ehlers, Todd A., et al. (author)
  • Past, present, and future geo-biosphere interactions on the Tibetan Plateau and implications for permafrost
  • 2022
  • In: Earth-Science Reviews. - : Elsevier BV. - 0012-8252. ; 234
  • Journal article (peer-reviewed)abstract
    • Interactions between the atmosphere, biosphere, cryosphere, hydrosphere, and geosphere are most active in the critical zone, a region extending from the tops of trees to the top of unweathered bedrock. Changes in one or more of these spheres can result in a cascade of changes throughout the system in ways that are often poorly understood. Here we investigate how past and present climate change have impacted permafrost, hydrology, and ecosystems on the Tibetan Plateau. We do this by compiling existing climate, hydrologic, cryosphere, biosphere, and geologic studies documenting change over decadal to glacial-interglacial timescales and longer. Our emphasis is on showing present-day trends in environmental change and how plateau ecosystems have largely flourished under warmer and wetter periods in the geologic past. We identify two future pathways that could lead to either a favorable greening or unfavorable degradation and desiccation of plateau ecosystems. Both paths are plausible given the available evidence. We contend that the key to which pathway future generations experience lies in what, if any, human intervention measures are implemented. We conclude with suggested management strategies that can be implemented to facilitate a future greening of the Tibetan Plateau.
  •  
5.
  • Hyde, Kevin D., et al. (author)
  • One stop shop: backbones trees for important phytopathogenic genera: I (2014)
  • 2014
  • In: Fungal diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 67:1, s. 21-125
  • Journal article (peer-reviewed)abstract
    • Many fungi are pathogenic on plants and cause significant damage in agriculture and forestry. They are also part of the natural ecosystem and may play a role in regulating plant numbers/density. Morphological identification and analysis of plant pathogenic fungi, while important, is often hampered by the scarcity of discriminatory taxonomic characters and the endophytic or inconspicuous nature of these fungi. Molecular (DNA sequence) data for plant pathogenic fungi have emerged as key information for diagnostic and classification studies, although hampered in part by non-standard laboratory practices and analytical methods. To facilitate current and future research, this study provides phylogenetic synopses for 25 groups of plant pathogenic fungi in the Ascomycota, Basidiomycota, Mucormycotina (Fungi), and Oomycota, using recent molecular data, up-to-date names, and the latest taxonomic insights. Lineage-specific laboratory protocols together with advice on their application, as well as general observations, are also provided. We hope to maintain updated backbone trees of these fungal lineages over time and to publish them jointly as new data emerge. Researchers of plant pathogenic fungi not covered by the present study are invited to join this future effort. Bipolaris, Botryosphaeriaceae, Botryosphaeria, Botrytis, Choanephora, Colletotrichum, Curvularia, Diaporthe, Diplodia, Dothiorella, Fusarium, Gilbertella, Lasiodiplodia, Mucor, Neofusicoccum, Pestalotiopsis, Phyllosticta, Phytophthora, Puccinia, Pyrenophora, Pythium, Rhizopus, Stagonosporopsis, Ustilago and Verticillium are dealt with in this paper.
  •  
6.
  • Potapov, Anton M., et al. (author)
  • Globally invariant metabolism but density-diversity mismatch in springtails
  • 2023
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning.
  •  
7.
  • Meadows, Jennifer, et al. (author)
  • Genome sequencing of 2000 canids by the Dog10K consortium advances the understanding of demography, genome function and architecture
  • 2023
  • In: Genome Biology. - : BioMed Central (BMC). - 1465-6906 .- 1474-760X. ; 24
  • Journal article (peer-reviewed)abstract
    • Background: The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 x data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function.Results: We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection.Conclusions: We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.
  •  
8.
  • Xu, X., et al. (author)
  • Landscape Metrics and Land-Use Patterns of Energy Crops in the Agricultural Landscape
  • 2023
  • In: Bioenergy Research. - : Springer Nature. - 1939-1234 .- 1939-1242. ; 16:4, s. 2178-2191
  • Journal article (peer-reviewed)abstract
    • Energy crops are a new player in the traditional agricultural landscape. The present paper analyses the land uses surrounding and the spatial characteristics of the main energy crops in Sweden (willow, poplar, hybrid aspen and reed canary grass) compared to traditional agricultural crops during the period 2006–2018. Spatial metrics (number of shape characterising points, shape index and rectangularity ratio) are calculated for each field, as well as the nearby land uses at varying distances, at radius: 500 m, 1000 m, 2000 m and 5000 m. A total of 1560 energy crop fields are studied in the 2006 dataset and 3416 fields in the 2018 dataset, which are compared to 58,246 fields with cereal crops in 2006 and 131,354 fields in the 2018 dataset. Results show that, despite being established on previous agricultural land, energy crops present a different spatial profile compared to traditional agricultural crops. Field shapes present less complexity than before, and the overall spatial features become more regular with time in both cases of energy crops and cereals, suggesting an increasing trend in cost-efficient agricultural practices and planning. Important differences concerning land use diversity at different scales are found between plantations versus grasses. In general, willow plantations are located in agriculture-dominated areas (> 70% at 500 m, > 50% at 2000 m), whereas reed canary grass is in forest-dominated landscapes (> 30% at 500 m, > 60% at 2000 m); both contribute to diversifying existing land uses although with varying effects. The results of this study are a basis to assess the impacts of energy crops at landscape level and can translate into applications in energy policy and planning. 
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view