SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu G) ;mspu:(conferencepaper)"

Sökning: WFRF:(Liu G) > Konferensbidrag

  • Resultat 1-10 av 144
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aamodt, K., et al. (författare)
  • Alignment of the ALICE Inner Tracking System with cosmic-ray tracks
  • 2010
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 5
  • Konferensbidrag (refereegranskat)abstract
    • ALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 mu m in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10(5) charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.
  •  
2.
  • Zhang, S. N., et al. (författare)
  • The high energy cosmic-radiation detection (HERD) facility onboard China's Space Station
  • 2014
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819496126
  • Konferensbidrag (refereegranskat)abstract
    • The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads of the cosmic lighthouse program onboard China's Space Station, which is planned for operation starting around 2020 for about 10 years. The main scientific objectives of HERD are indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 104 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of seven X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side SKTs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV, 20% for protons from 100 GeV to 1 PeV; electron/proton separation power better than 10-5; effective geometrical factors of >3 m2sr for electron and diffuse gamma-rays, >2 m2sr for cosmic ray nuclei. R and D is under way for reading out the LYSO signals with optical fiber coupled to image intensified CCD and the prototype of one layer of CALO. 
  •  
3.
  • Zhang, S. -N, et al. (författare)
  • Introduction to the high energy cosmic-radiation detection (HERD) facility onboard China's future space station
  • 2017
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads onboard China's Space Station, which is planned for operation starting around 2025 for about 10 years. The main scientific objectives of HERD are searching for signals of dark matter annihilation products, precise cosmic electron (plus positron) spectrum and anisotropy measurements up to 10 TeV, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 7,500 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of six X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side STKs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV and 20% for protons from 100 GeV to 1 PeV; electron/proton separation power better than 10-5; effective geometrical factors of >3 m2sr for electron and diffuse gamma-rays, >2 m2sr for cosmic ray nuclei. R&D is under way for reading out the LYSO signals with optical fiber coupled to image intensified IsCMOS and CALO prototype of 250 LYSO crystals. 
  •  
4.
  • Abgrall, N., et al. (författare)
  • The large enriched germanium experiment for neutrinoless double beta decay (LEGEND)
  • 2017
  • Ingår i: AIP Conference Proceedings. - : Author(s). - 1551-7616 .- 0094-243X. ; 1894
  • Konferensbidrag (refereegranskat)abstract
    • The observation of neutrinoless double-beta decay (0νββ) would show that lepton number is violated, reveal that neu-trinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of ∼0.1 count /(FWHM·t·yr) in the region of the signal. The current generation 76Ge experiments GERDA and the Majorana Demonstrator, utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ signal region of all 0νββ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76Ge experiment. The collaboration aims to develop a phased 0νββ experimental program with discovery potential at a half-life approaching or at 1028 years, using existing resources as appropriate to expedite physics results.
  •  
5.
  • Tommasini, R., et al. (författare)
  • Accepted Tutorials at The Web Conference 2022
  • 2022
  • Ingår i: WWW 2022 - Companion Proceedings of the Web Conference 2022. - New York, NY, USA : Association for Computing Machinery (ACM). ; , s. 391-399
  • Konferensbidrag (refereegranskat)abstract
    • This paper summarizes the content of the 20 tutorials that have been given at The Web Conference 2022: 85% of these tutorials are lecture style, and 15% of these are hands on. 
  •  
6.
  • Steer, S. J., et al. (författare)
  • Isomeric Decay Studies In Neutron-Rich N Approximate To 126 Nuclei
  • 2009
  • Ingår i: International Journal Of Modern Physics E-Nuclear Physics. - 0218-3013. ; 18:4, s. 1002-1007
  • Konferensbidrag (refereegranskat)abstract
    • Heavy neutron-rich nuclei were populated via relativistic energy fragmentation of a E/A= 1 GeV Pb-208 beam. The nuclei of interest were selected and identified by a fragment separator and then implanted in a passive plastic stopper. Delayed. rays following internal isomeric decays were detected by the RISING array. Experimental information was obtained on a number of nuclei with Z=73-80 (Ta-Hg), providing new information both on the prolate-oblate transitional region as well as on the N=126 closed shell nuclei.
  •  
7.
  • Kristan, M., et al. (författare)
  • The Eighth Visual Object Tracking VOT2020 Challenge Results
  • 2020
  • Ingår i: Computer Vision. - Cham : Springer International Publishing. - 9783030682378 ; , s. 547-601
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2020 is the eighth annual tracker benchmarking activity organized by the VOT initiative. Results of 58 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The VOT2020 challenge was composed of five sub-challenges focusing on different tracking domains: (i) VOT-ST2020 challenge focused on short-term tracking in RGB, (ii) VOT-RT2020 challenge focused on “real-time” short-term tracking in RGB, (iii) VOT-LT2020 focused on long-term tracking namely coping with target disappearance and reappearance, (iv) VOT-RGBT2020 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2020 challenge focused on long-term tracking in RGB and depth imagery. Only the VOT-ST2020 datasets were refreshed. A significant novelty is introduction of a new VOT short-term tracking evaluation methodology, and introduction of segmentation ground truth in the VOT-ST2020 challenge – bounding boxes will no longer be used in the VOT-ST challenges. A new VOT Python toolkit that implements all these novelites was introduced. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website (http://votchallenge.net ). 
  •  
8.
  • Navarrini, A., et al. (författare)
  • Design of PHAROS2 Phased Array Feed
  • 2018
  • Ingår i: 2018 2nd URSI Atlantic Radio Science Meeting, AT-RASC 2018.
  • Konferensbidrag (refereegranskat)abstract
    • We describe the design and architecture of PHAROS2, a cryogenically cooled 4-8 GHz Phased Array Feed (PAF) demonstrator with digital beamformer for radio astronomy application. The instrument will be capable of synthesizing four independent single-polarization beams by combining 24 active elements of an array of Vivaldi antennas. PHAROS2, the upgrade of PHAROS (PHased Arrays for Reflector Observing Systems), features: a) commercial cryogenic LNAs with state-of-the-art performance, b) a 'Warm Section' for signal filtering, conditioning and single downconversion to select a≈275 MHz: Intermediate Frequency (IF) bandwidth within the 4-8 GHz Radio Frequency (RF) band, c) an IF signal transportation by analog WDM (Wavelength Division Mutiplexing) fiber-optic link, and d) a FPGA-based Italian Tile Processing Module (iTPM) digital backend. PHAROS2 will be mounted at the primary focus of the 76-m diameter Lovell radio telescope (Jodrell Bank Observatory, UK) for technical and scientific validation.
  •  
9.
  • Podolyak, Zs., et al. (författare)
  • Structure of Neutron-rich Nuclei Around the N=126 Closed Shell; the Yrast Structure of 205Au up to Spin-parity I = (19/2+)
  • 2009
  • Ingår i: European Physical Journal A. - : Springer Science and Business Media LLC. - 1434-6001 .- 1434-601X. ; 42:3, s. 489-493
  • Konferensbidrag (refereegranskat)abstract
    • Heavy neutron-rich nuclei have been populated through the relativistic fragmentation of a Pb-208(82) beam at E/A = 1 GeV on a 2.5 g/cm(2) thick Be target. The synthesised nuclei were selected and identified in-flight using the fragment separator at GSI. Approximately 300 ns after production, the selected nuclei were implanted in an similar to 8 mm thick perspex stopper, positioned at the centre of the RISING gamma-ray detector spectrometer array. A previously unreported isomer with a half-life T-1/2 = 163(5) ns has been observed in the N = 126 closed-shell nucleus Au-205(79). Through gamma-ray singles and gamma-gamma coincidence analysis a level scheme was established. The comparison with a shell model calculation tentatively identifies the spin-parity of the excited states, including the isomer itself, which is found to be I-pi = (19/2(+)).
  •  
10.
  • Regan, P. H., et al. (författare)
  • First Results from the Stopped RISING Campaign at GSI: The Mapping of Isomeric Decays in Highly Exotic Nuclei
  • 2007
  • Ingår i: AIP Conference Proceedings. - : AIP. - 0094-243X. - 9780735413283 ; 899, s. 19-22
  • Konferensbidrag (refereegranskat)abstract
    • The first results from the Stopped Beam RISING experimental campaign performed at the GSI laboratory in Darmstadt, Germany, are presented. RISING (Rare ISotope INvestigations at GSI) constitutes a major new experimental program in European nuclear structure physics research aimed at using relativistic‐energy, projectile‐fragmentation reactions to study nuclei with exotic proton‐to‐neutron ratios. This paper introduces the physics aims of the Stopped RISING collaboration and presents some technical details and initial results from experiments using the RISING array to study decays from metastable nuclear states in both proton and neutron‐rich nuclei.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 144

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy