SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Guozhen) "

Sökning: WFRF:(Liu Guozhen)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Luo, Yifei, et al. (författare)
  • Technology Roadmap for Flexible Sensors
  • 2023
  • Ingår i: ACS Nano. - : American Chemical Society. - 1936-0851 .- 1936-086X. ; 17:6, s. 5211-5295
  • Forskningsöversikt (refereegranskat)abstract
    • Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
  •  
2.
  • Kongkaew, Supatinee, et al. (författare)
  • Craft-and-Stick Xurographic Manufacturing of Integrated Microfluidic Electrochemical Sensing Platform
  • 2023
  • Ingår i: Biosensors. - : MDPI. - 2079-6374. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • An innovative modular approach for facile design and construction of flexible microfluidic biosensor platforms based on a dry manufacturing "craft-and-stick" approach is developed. The design and fabrication of the flexible graphene paper electrode (GPE) unit and polyethylene tetraphthalate sheet (PET)6/adhesive fluidic unit are completed by an economic and generic xurographic craft approach. The GPE widths and the microfluidic channels can be constructed down to 300 mu m and 200 mu m, respectively. Both units were assembled by simple double-sided adhesive tapes into a microfluidic integrated GPE (MF-iGPE) that are flexible, thin (<0.5 mm), and lightweight (0.4 g). We further functionalized the iGPE with Prussian blue and glucose oxidase for the fabrication of MF-iGPE glucose biosensors. With a closed-channel PET fluidic pattern, the MF-iGPE glucose biosensors were packaged and sealed to protect the integrated device from moisture for storage and could easily open with scissors for sample loading. Our glucose biosensors showed 2 linear dynamic regions of 0.05-1.0 and 1.0-5.5 mmol L-1 glucose. The MF-iGPE showed good reproducibility for glucose detection (RSD < 6.1%, n = 6) and required only 10 mu L of the analyte. This modular craft-and-stick manufacturing approach could potentially further develop along the concept of paper-crafted model assembly kits suitable for low-resource laboratories or classroom settings.
  •  
3.
  • Shi, Guoxi, et al. (författare)
  • Interactive influence of light intensity and soil fertility on root-associated arbuscular mycorrhizal fungi
  • 2014
  • Ingår i: Plant and Soil. - : Springer Science and Business Media LLC. - 0032-079X .- 1573-5036. ; 378:1-2, s. 173-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil nutrients and light have major effects on the economics of arbuscular mycorrhizal (AM) symbioses. This study tests the main and interactive effects of soil fertility and light on AM fungal community. We conducted a 3 year mesocosm experiment with a full two factorial design: light (full light or shade) and soil fertility (unfertilized or fertilized), on the Qinghai-Tibetan Plateau. Plant traits, soil characteristics and the AM fungal communities inside roots and in soils were measured. Shade reduced AM colonization of roots, fertilization reduced the hyphal abundance in the soil, and both factors reduced species richness of AM fungi inside plant roots. Fertilization exacerbated the negative impacts of shade on AM fungal abundance and diversity. We observed 15 phylotypes of AM fungi inside roots and ten morphotypes of AM fungal spores in the soil. Taxa responded differently to shade and fertilization and there was little congruence between the responses of fungi inside the roots and in the spore community. Our findings indicate that both shade and fertilization reduce the abundance of AM fungi, but the two factors have different effects on the quality of plant roots as habitat for AM fungi.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy