SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Xiang) ;hsvcat:4"

Sökning: WFRF:(Liu Xiang) > Lantbruksvetenskap

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gao, Xiang, et al. (författare)
  • Cold adaptation in drylands: transcriptomic insights into cold-stressed Nostoc flagelliforme and characterization of a hypothetical gene with cold and nitrogen stress tolerance
  • 2021
  • Ingår i: Environmental Microbiology. - : Wiley. - 1462-2920 .- 1462-2912. ; 23:2, s. 713-727
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental stressors, especially low temperature, are very common on the earth's dryland systems. Terrestrial cyanobacteria have evolved with cold adaptability in addition to extreme dryness and high irradiation resistance. The dryland soil surface-dwelling species, Nostoc flagelliforme, serves as a potential model organism to gain insights into cyanobacterial cold adaptation. In this study, we performed transcriptomic analysis of N. flagelliforme samples in response to low temperature. The results revealed that the biological processes, such as terpenoid biosynthetic process, oxidoreductase activity, carbohydrate metabolism, biosynthesis of secondary metabolites, lipid and nitrogen metabolism, were significantly and dynamically changed during the cold stress. It was noteworthy that the transcription of the denitrification pathway for ammonia accumulation was enhanced, implying an importance for nitrogen utilization in stress resistance. In addition, characterization of a cold-responsive hypothetical gene csrnf1 found that it could greatly improve the cold-resistant performance of cells when it was heterologously expressed in transgenic Nostoc sp. PCC 7120. It was also found that csrnf1 transgenic strain exhibited resistance to nitrogen-deficient environmental stress. Considering that dryland cyanobacteria have to cope with low temperature on infertile soils, this study would enrich our understanding on the importance of multifunction of the genes for environmental cold adaptation in drylands.
  •  
2.
  • Li, Tiewei, et al. (författare)
  • Increasing Sensitivity of Tree Radial Growth to Precipitation
  • 2024
  • Ingår i: Geophysical Research Letters. - 1944-8007 .- 0094-8276. ; 51:16
  • Tidskriftsartikel (refereegranskat)abstract
    • The sensitivity of tree growth to precipitation regulates their responses to drought, and is a crucial metric for predicting ecosystem dynamics and vulnerability. Sensitivity may be changing with continuing climate change, yet a comprehensive assessment of its change is still lacking. We utilized tree ring measurements from 3,044 sites, climate data and CO2 concentrations obtained from monitoring stations, combined with dynamic global vegetation models to investigate spatiotemporal changes in the sensitivity over the past century. We observed an increasing sensitivity since around 1950. This increased sensitivity was particularly pronounced in arid biomes due to the combined effect of increased precipitation and elevated CO2. While elevated CO2 reduced the sensitivity of the humid regions, the intensified water pressure caused by decreased precipitation still increased the sensitivity. Our findings suggest an escalating vulnerability of tree growth to precipitation change, which may increase the risk of tree mortality under future intensified drought.
  •  
3.
  • Liu, Xiuyu, et al. (författare)
  • Functional characterization of (S)–N-methylcoclaurine 3′-hydroxylase (NMCH) involved in the biosynthesis of benzylisoquinoline alkaloids in Corydalis yanhusuo
  • 2021
  • Ingår i: Plant Physiology and Biochemistry. - : Elsevier BV. - 0981-9428. ; 168, s. 507-515
  • Tidskriftsartikel (refereegranskat)abstract
    • Benzylisoquinoline alkaloids (BIAs) are compounds naturally found in plants and can have significant value in clinical settings. Metabolic engineering and synthetic biology are both promising approaches for the heterologous acquisition of benzylisoquinoline alkaloids. (S)–N-methylcoclaurine 3′-hydroxylase (NMCH), a member of the CYP80 family of CYP450, is the penultimate catalytic enzyme that forms the central branch-point intermediate (S)-reticuline and plays a key role in the biosynthesis of BIAs. In this study, an NMCH gene was cloned from Corydalis yanhusuo, while in vitro reactions demonstrated that CyNMCH can catalyze (S)–N-methylcoclaurine to produce (S)-3′-hydroxy-N-methylcoclaurine. The Km and Kcat of CyNMCH were estimated and compared with those identified in Eschscholzia californica and Coptis japonica. This newly discovered CyNMCH will provide alternative genetic resources for the synthetic biological production of benzylisoquinoline alkaloids and provides a foundation to help analyze the biosynthetic pathway of BIAs biosynthesis in C. yanhusuo.
  •  
4.
  • Shi, Tian-Le, et al. (författare)
  • Differential gene expression and potential regulatory network of fatty acid biosynthesis during fruit and leaf development in yellowhorn (Xanthoceras sorbifolium), an oil-producing tree with significant deployment values
  • 2024
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Xanthoceras sorbifolium (yellowhorn) is a woody oil plant with super stress resistance and excellent oil characteristics. The yellowhorn oil can be used as biofuel and edible oil with high nutritional and medicinal value. However, genetic studies on yellowhorn are just in the beginning, and fundamental biological questions regarding its very long-chain fatty acid (VLCFA) biosynthesis pathway remain largely unknown. In this study, we reconstructed the VLCFA biosynthesis pathway and annotated 137 genes encoding relevant enzymes. We identified four oleosin genes that package triacylglycerols (TAGs) and are specifically expressed in fruits, likely playing key roles in yellowhorn oil production. Especially, by examining time-ordered gene co-expression network (TO-GCN) constructed from fruit and leaf developments, we identified key enzymatic genes and potential regulatory transcription factors involved in VLCFA synthesis. In fruits, we further inferred a hierarchical regulatory network with MYB-related (XS03G0296800) and B3 (XS02G0057600) transcription factors as top-tier regulators, providing clues into factors controlling carbon flux into fatty acids. Our results offer new insights into key genes and transcriptional regulators governing fatty acid production in yellowhorn, laying the foundation for efforts to optimize oil content and fatty acid composition. Moreover, the gene expression patterns and putative regulatory relationships identified here will inform metabolic engineering and molecular breeding approaches tailored to meet biofuel and bioproduct demands.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy