SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Liu Yan Ping) ;lar1:(umu)"

Search: WFRF:(Liu Yan Ping) > Umeå University

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Kristan, Matej, et al. (author)
  • The first visual object tracking segmentation VOTS2023 challenge results
  • 2023
  • In: 2023 IEEE/CVF International conference on computer vision workshops (ICCVW). - : Institute of Electrical and Electronics Engineers Inc.. - 9798350307443 - 9798350307450 ; , s. 1788-1810
  • Conference paper (peer-reviewed)abstract
    • The Visual Object Tracking Segmentation VOTS2023 challenge is the eleventh annual tracker benchmarking activity of the VOT initiative. This challenge is the first to merge short-term and long-term as well as single-target and multiple-target tracking with segmentation masks as the only target location specification. A new dataset was created; the ground truth has been withheld to prevent overfitting. New performance measures and evaluation protocols have been created along with a new toolkit and an evaluation server. Results of the presented 47 trackers indicate that modern tracking frameworks are well-suited to deal with convergence of short-term and long-term tracking and that multiple and single target tracking can be considered a single problem. A leaderboard, with participating trackers details, the source code, the datasets, and the evaluation kit are publicly available at the challenge website1
  •  
3.
  • Liu, Hairong, et al. (author)
  • Design and analysis of anti-resonant reflecting photonic crystal VCSEL lasers
  • 2004
  • In: Optics Express. - : Optical Society of America. - 1094-4087. ; 12:18, s. 4269-4274
  • Journal article (peer-reviewed)abstract
    • Anti-resonant reflecting photonic crystal structure is employed in vertical cavity surface emitting lasers (VCSELs) to achieve photon confinement in lateral direction. Such a design is promising in supporting large-aperture single-mode emission. In the configuration, hexagonal arrays of high-index cylinders which run vertically in the cladding region are introduced in the VCSEL’s top DBR (p-DBR) mirror region. The transverse modal property of the proposed structure, especially leakage loss, has been theoretically investigated. An optimum design for the minimum radiation loss while maintaining single-mode operation has been discussed in this paper.
  •  
4.
  • Cheng, Shi-Ping, et al. (author)
  • Haplotype-resolved genome assembly and allele-specific gene expression in cultivated ginger
  • 2021
  • In: Horticulture Research. - : Springer Nature. - 2052-7276. ; 8:1
  • Journal article (peer-reviewed)abstract
    • Ginger (Zingiber officinale) is one of the most valued spice plants worldwide; it is prized for its culinary and folk medicinal applications and is therefore of high economic and cultural importance. Here, we present a haplotype-resolved, chromosome-scale assembly for diploid ginger anchored to 11 pseudochromosome pairs with a total length of 3.1 Gb. Remarkable structural variation was identified between haplotypes, and two inversions larger than 15 Mb on chromosome 4 may be associated with ginger infertility. We performed a comprehensive, spatiotemporal, genome-wide analysis of allelic expression patterns, revealing that most alleles are coordinately expressed. The alleles that exhibited the largest differences in expression showed closer proximity to transposable elements, greater coding sequence divergence, more relaxed selection pressure, and more transcription factor binding site differences. We also predicted the transcription factors potentially regulating 6-gingerol biosynthesis. Our allele-aware assembly provides a powerful platform for future functional genomics, molecular breeding, and genome editing in ginger.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view