SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Liu Yang) ;lar1:(lnu)"

Search: WFRF:(Liu Yang) > Linnaeus University

  • Result 1-10 of 37
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Yang, Shilei, et al. (author)
  • Impact of grassland degradation on the distribution and bioavailability of soil silicon: Implications for the Si cycle in grasslands
  • 2019
  • In: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 657, s. 811-818
  • Journal article (peer-reviewed)abstract
    • Grassland ecosystems play an important role in the global terrestrial silicon (Si) cycle, and Si is a beneficial elementand structural constituent for the growth of grasses. In previous decades, grasslands have been degradedto different degrees because of the drying climate and intense human disturbance. However, the impact of grasslanddegradation on the distribution and bioavailability of soil Si is largely unknown. Here, we investigated vegetationand soil conditions of 30 sites to characterize different degrees of degradation for grasslands in the agropastoralecotone of northern China. We then explored the impact of grassland degradation on the distributionand bioavailability of soil Si, including total Si and four forms of noncrystalline Si in three horizons (0–10,10–20 and 20–40 cm) of different soil profiles. The concentrations of noncrystalline Si in soil profiles significantlydecreased with increasing degrees of degradation, being 7.35 ± 0.88 mg g−1, 5.36 ± 0.39 mg g−1, 3.81 ±0.37 mg g−1 and 3.60±0.26 mg g−1 in non-degraded, lightly degraded, moderately degraded and seriously degradedgrasslands, respectively. Moreover, the storage of noncrystalline Si decreased from higher than 40 t ha−1to lower than 23 t ha−1. The corresponding bioavailability of soil Si also generally decreased with grassland degradation.These processes may not only affect the Si pools and fluxes in soils but also influence the Si uptake in plants. We suggest that grassland degradation can significantly affect the global grassland Si cycle. Grasslandmanagement methods such as fertilizing and avoiding overgrazing can potentially double the content and storageof noncrystalline Si in soils, thereby enhancing the soil Si bioavailability by N17%.
  •  
2.
  • Han, Guilin, et al. (author)
  • Carbon-nitrogen isotope coupling of soil organic matter in a karst region under land use change, Southwest China
  • 2020
  • In: Agriculture, Ecosystems & Environment. - : Elsevier. - 0167-8809 .- 1873-2305. ; 301, s. 1-11
  • Journal article (peer-reviewed)abstract
    • The soil stable carbon (C) and nitrogen (N) isotopes are widely used to indicate C3/C4 vegetation history, N sources and transformation processes, respectively. However, land use change, particularly converting forest into farm land, alters soil organic matter (SOM) sources and processes in soils, resulting in a hard understanding of soil C and N fate. In the present study, soil organic carbon (SOC) and soil organic nitrogen (SON) contents, and their stable isotope compositions (δ13C and δ15N) were determined in the five soil profiles under land use change (i.e., conversion of native forest land into shrub land, grass land, maize field, and paddy land) in Lobo county, Guizhou province, Southwest China. A coupling of 13C and 15N isotope in SOM under land use change was verified whether it could provide more accurate indications of sources and transformation processes.The SOC and SON contents of native forest land at the 0∼20 cm depth were significantly larger than these under other transformed lands. The SOC and SON contents decreased exponentially with increasing soil depth under all land use types, and showed opposite trends with soil pH. The C/N ratios of SOM in the soils under undisturbed native forest decreased from 10 to 7 with increasing soil depth, while an irregular fluctuation along soil profile was shown in other transformed lands. Similarly to the most study in the soils under C3 forest, the δ13C and δ15N values of SOM in the soils under native forest at the 0∼50 cm depth increased with increasing soil depth, with the range of −27.7‰∼−25.7‰ and 6.5‰∼10.0‰, respectively. While decreasing trends of them in the soils below 50 cm depth were attributed to the mixing of 13C and 15N-depleted organic matters from bedrocks. However, the δ13C and δ15N values of SOM along the soil profiles under other transformed lands were intensively irregularly fluctuated between −29.1‰ and −19.0‰, 1.2‰ and 7.9‰, respectively. The single δ13C and δ15N signals in the soil profiles of transformed lands indeed revealed the alterations of historical C3/C4 composition and N transformation processes after land use change, but these indications were not specific. The result of the coupling of 13C and 15N isotope under native forest land reveals a positive relationship between them, which associated with full plant-absorption against 15N-depleted inorganic nitrogen derived from SOM mineralization. This study suggests that the coupling of CN isotope fractionation more likely occurs in the C3 forest ecosystem with high N utilization efficiency. However, the replacement of native forest by farm land or grass land will reduce soil N utilization efficiency.
  •  
3.
  • Shilei, Yang, et al. (author)
  • A review of carbon isotopes of phytoliths : implications for phytolith-occluded carbon sources
  • 2020
  • In: Journal of Soils and Sediments. - : Springer. - 1439-0108 .- 1614-7480. ; 20:4, s. 1811-1823
  • Journal article (peer-reviewed)abstract
    • Purpose Phytolith-occluded carbon (PhytOC) is mainly derived from the products of photosynthesis, which can be preserved in soils and sediments for hundreds-to-thousands of years due to the resilient nature of the amorphous phytolith silica. Therefore, stable and radioactive carbon (C) isotopes of phytoliths can be effectively utilized in paleoecological and archeological research. However, there still exists debate about the applicability of C isotopes of phytoliths, as a “two-pool” hypothesis to characterize PhytOC sources has been proposed, whereby a component of the PhytOC is derived from soil organic matter (SOM) absorbed through plant roots. Therefore, it is necessary to review this topic to better understand the source of PhytOC. Materials and method We introduce the stable and radioactive C isotopic compositions of PhytOC, present the impacts of different extraction methods on the study of PhytOC, and discuss the implications of these factors for determining the sources of PhytOC. Results and discussion Based on this review, we suggest that organic matter synthesized by photosynthesis is the main source of PhytOC. However, it is important to make clear whether and how SOM-derived C present in phytoliths influence the controversial “too-old” skew and isotopic fractionation. Conclusions Though the two-pool hypothesis has been proved by many researches, the carbon isotopes of phytoliths still have potential in paleoecology and archeology, because the main source is photosynthesis and many previous studies put forward the availability of these parameters. This review also shows that phytolith C isotopes may vary with different organic C compounds within phytoliths, which needs further study at the molecular scale. Different phytolith extraction methods can influence 14C dating results.
  •  
4.
  • Song, Zhaoliang, et al. (author)
  • High potential of stable carbon sequestration in phytoliths of China's grasslands
  • 2022
  • In: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 28:8, s. 2736-2750
  • Journal article (peer-reviewed)abstract
    • Phytolith carbon (C) sequestration plays a key role in mitigating global climate change at a centennial to millennial time scale. However, previous estimates of phytolith-occluded carbon (PhytOC) storage and potential in China's grasslands have large uncertainties mainly due to multiple data sources. This contributes to the uncertainty in predicting long-term C sequestration in terrestrial ecosystems using Earth System Models. In this study, we carried out an intensive field investigation (79 sites, 237 soil profiles [0-100 cm], and 61 vegetation assessments) to quantify PhytOC storage in China's grasslands and to better explore the biogeographical patterns and influencing factors. Generally, PhytOC production flux and soil PhytOC density in both the Tibetan Plateau and the Inner Mongolian Plateau had a decreasing trend from the Northeast to the Southwest. The aboveground PhytOC production rate in China's grassland was 0.48 x 10(6) t CO2 a(-1), and the soil PhytOC storage was 383 x 10(6) t CO2. About 45% of soil PhytOC was stored in the deep soil layers (50-100 cm), highlighting the importance of deep soil layers for C stock assessments. Importantly, the Tibetan Plateau had the greatest contribution (more than 70%) to the PhytOC storage in China's grasslands. The results of multiple regression analysis indicated that altitude and soil texture significantly influenced the spatial distribution of soil PhytOC, explaining 78.1% of the total variation. Soil phytolith turnover time in China's grasslands was mainly controlled by climatic conditions, with the turnover time on the Tibetan Plateau being significantly longer than that on the Inner Mongolian Plateau. Our results offer more accurate estimates of the potential for phytolith C sequestration from ecological restoration projects in degraded grassland ecosystems. These estimates are essential to parameterizing and validating global C models.
  •  
5.
  • Wu, Lele, et al. (author)
  • Organic matter composition and stability in estuarine wetlands depending on soil salinity
  • 2024
  • In: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 945
  • Journal article (peer-reviewed)abstract
    • Coastal wetlands are key players in mitigating global climate change by sequestering soil organic matter. Soil organic matter consists of less stable particulate organic matter (POM) and more stable mineral -associated organic matter (MAOM). The distribution and drivers of MAOM and POM in coastal wetlands have received little attention, despite the processes and mechanisms differ from that in the upland soils. We explored the distribution of POM and MAOM, their contributions to SOM, and the controlling factors along a salinity gradient in an estuarine wetland. In the estuarine wetland, POM C and N were influenced by soil depth and vegetation type, whereas MAOM C and N were influenced only by vegetation type. In the estuarine wetland, SOM was predominantly in the form of MAOM ( > 70 %) and increased with salinity (70 % -76 %), leading to long-term C sequestration. Both POM and MAOM increased with SOM, and the increase rate of POM was higher than that of MAOM. Aboveground plant biomass decreased with increasing salinity, resulted in a decrease in POM C (46 % - 81 %) and N (52 % -82 %) pools. As the mineral amount and activity, and microbial biomass decreased, the MAOM C (2.5 % -64 %) and N pool (8.6 % -59 %) decreased with salinity. When evaluating POM, the most influential factors were microbial biomass carbon (MBC) and dissolved organic carbon (DOC). Key parameters, including MBC, DOC, soil salinity, soil water content, aboveground plant biomass, mineral content and activity, and bulk density, were identified as influencing factors for both MAOM abundance. Soil water content not only directly controlled MAOM, but together with salinity also indirectly regulated POM and MAOM by controlling microbial biomass and aboveground plant biomass. Our findings have important implications for improving the accumulation and increased stability of soil organic matter in coastal wetlands, considering the global sea level rise and increased frequency of inundation.
  •  
6.
  • Xia, Shaopan, et al. (author)
  • Storage, patterns and influencing factors for soil organic carbon in coastal wetlands of China
  • 2022
  • In: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 28:20, s. 6065-6085
  • Journal article (peer-reviewed)abstract
    • Soil organic carbon (SOC) in coastal wetlands, also known as "blue C," is an essential component of the global C cycles. To gain a detailed insight into blue C storage and controlling factors, we studied 142 sites across ca. 5000 km of coastal wetlands, covering temperate, subtropical, and tropical climates in China. The wetlands represented six vegetation types (Phragmites australis, mixed of P. australis and Suaeda, single Suaeda, Spartina alterniflora, mangrove [Kandelia obovata and Avicennia marina], tidal flat) and three vegetation types invaded by S. alterniflora (P. australis, K. obovata, A. marina). Our results revealed large spatial heterogeneity in SOC density of the top 1-m ranging 40-200 Mg C ha(-1), with higher values in mid-latitude regions (25-30 degrees N) compared with those in both low- (20 degrees N) and high-latitude (38-40 degrees N) regions. Vegetation type influenced SOC density, with P. australis and S. alterniflora having the largest SOC density, followed by mangrove, mixed P. australis and Suaeda, single Suaeda and tidal flat. SOC density increased by 6.25 Mg ha(-1) following S. alterniflora invasion into P. australis community but decreased by 28.56 and 8.17 Mg ha(-1) following invasion into K. obovata and A. marina communities. Based on field measurements and published literature, we calculated a total inventory of 57 x 10(6) Mg C in the top 1-m soil across China's coastal wetlands. Edaphic variables controlled SOC content, with soil chemical properties explaining the largest variance in SOC content. Climate did not control SOC content but had a strong interactive effect with edaphic variables. Plant biomass and quality traits were a minor contributor in regulating SOC content, highlighting the importance of quantity and quality of OC inputs and the balance between production and degradation within the coastal wetlands. These findings provide new insights into blue C stabilization mechanisms and sequestration capacity in coastal wetlands.
  •  
7.
  • Zhao, Tianhao, et al. (author)
  • Seasonal migration patterns of Siberian Rubythroat (Calliope calliope) facing the Qinghai-Tibet Plateau
  • 2024
  • In: Movement Ecology. - : BioMed Central (BMC). - 2051-3933. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Background Small songbirds respond and adapt to various geographical barriers during their annual migration. Global flyways reveal the diverse migration strategies in response to different geographical barriers, among which are high-elevation plateaus. However, few studies have been focused on the largest and highest plateau in the world, the Qinghai-Tibet Plateau (QTP) which poses a significant barrier to migratory passerines. The present study explored the annual migration routes and strategies of a population of Siberian Rubythroats (Calliope calliope) that breed on the north-eastern edge of the QTP. Methods Over the period from 2021 to 2023, we applied light-level geolocators (13 deployed, seven recollected), archival GPS tags (45 deployed, 17 recollected), and CAnMove multi-sensor loggers (with barometer, accelerometer, thermometer, and light sensor, 20 deployed, six recollected) to adult males from the breeding population of Siberian Rubythroat on the QTP. Here we describe the migratory routes and phenology extracted or inferred from the GPS and multi-sensor logger data, and used a combination of accelerometric and barometric data to describe the elevational migration pattern, flight altitude, and flight duration. All light-level geolocators failed to collect suitable data. Results Both GPS locations and positions derived from pressure-based inference revealed that during autumn, the migration route detoured from the bee-line between breeding and wintering grounds, leading to a gradual elevational decrease. The spring route was more direct, with more flights over mountainous areas in western China. This different migration route during spring probably reflects a strategy for faster migration, which corresponds with more frequent long nocturnal migration flights and shorter stopovers during spring migration than in autumn. The average flight altitude (1856 +/- 781 m above sea level) was correlated with ground elevation but did not differ between the seasons. Conclusions Our finding indicates strong, season-dependent impact of the Qinghai-Tibet Plateau on shaping passerine migration strategies. We hereby call for more attention to the unexplored central-China flyway to extend our knowledge on the environment-migration interaction among small passerines.
  •  
8.
  • Abdalla, H., et al. (author)
  • A search for new supernova remnant shells in the Galactic plane with HESS
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Journal article (peer-reviewed)abstract
    • A search for new supernova remnants (SNRs) has been conducted using TeV gamma-ray data from the H.E.S.S. Galactic plane survey. As an identification criterion, shell morphologies that are characteristic for known resolved TeV SNRs have been used. Three new SNR candidates were identified in the H.E.S.S. data set with this method. Extensive multiwavelength searches for counterparts were conducted. A radio SNR candidate has been identified to be a counterpart to HESS J1534-571. The TeV source is therefore classified as a SNR. For the other two sources, HESS J1614-518 and HESS J1912 + 101, no identifying counterparts have been found, thus they remain SNR candidates for the time being. TeV-emitting SNRs are key objects in the context of identifying the accelerators of Galactic cosmic rays. The TeV emission of the relativistic particles in the new sources is examined in view of possible leptonic and hadronic emission scenarios, taking the current multiwavelength knowledge into account.
  •  
9.
  • Abdalla, H., et al. (author)
  • A search for very high-energy flares from the microquasars GRS 1915+105, Circinus X-1, and V4641 Sgr using contemporaneous HESS and RXTE observations
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Journal article (peer-reviewed)abstract
    • Context. Microquasars are potential gamma-ray emitters. Indications of transient episodes of gamma-ray emission were recently reported in at least two systems: Cyg X-1 and Cyg X-3. The identification of additional gamma-ray-emitting microquasars is required to better understand how gamma-ray emission can be produced in these systems. Aims. Theoretical models have predicted very high-energy (VHE) gamma-ray emission from microquasars during periods of transient outburst. Observations reported herein were undertaken with the objective of observing a broadband flaring event in the gamma-ray and X-ray bands. Methods. Contemporaneous observations of three microquasars, GRS 1915+105, Circinus X-1, and V4641 Sgr, were obtained using the High Energy Spectroscopic System (H.E.S.S.) telescope array and the Rossi X-ray Timing Explorer (RXTE) satellite. X-ray analyses for each microquasar were performed and VHE gamma-ray upper limits from contemporaneous H.E.S.S. observations were derived. Results. No significant gamma-ray signal has been detected in any of the three systems. The integral gamma-ray photon flux at the observational epochs is constrained to be I(>560 GeV) < 7.3 x 10(-13) cm(-2) S-1, I(>560 GeV) < 1.2 x 10-(12) cm s(-1), and I(>240 GeV) < 4.5 x 10(-12) cm(-2) s(-1) for GRS 1915+105, Circinus X-1, and V4641 Sgr, respectively. Conclusions. The gamma-ray upper limits obtained using H.E.S.S. are examined in the context of previous Cherenkov telescope observations of microquasars. The effect of intrinsic absorption is modelled for each target and found to have negligible impact on the flux of escaping gamma-rays. When combined with the X-ray behaviour observed using RXTE, the derived results indicate that if detectable VHE gamma-ray emission from microquasars is commonplace, then it is likely to be highly transient.
  •  
10.
  • Abdalla, H., et al. (author)
  • Characterising the VHE diffuse emission in the central 200 parsecs of our Galaxy with HESS
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Journal article (peer-reviewed)abstract
    • The diffuse very high-energy (VHE; > 100 GeV) gamma-ray emission observed in the central 200 pc of the Milky Way by H.E.S.S. was found to follow dense matter distribution in the central molecular zone (CMZ) up to a longitudinal distance of about 130 pc to the Galactic centre (GC), where the flux rapidly decreases. This was initially interpreted as the result of a burst-like injection of energetic particles 104 yr ago, but a recent more sensitive H.E.S.S. analysis revealed that the cosmic-ray (CR) density profile drops with the distance to the centre, making data compatible with a steady cosmic PeVatron at the GC. In this paper, we extend this analysis to obtain, for the first time, a detailed characterisation of the correlation with matter and to search for additional features and individual gamma-ray sources in the inner 200 pc. Taking advantage of 250 h of H.E.S.S. data and improved analysis techniques, we perform a detailed morphology study of the diffuse VHE emission observed from the GC ridge and reconstruct its total spectrum. To test the various contributions to the total gamma-ray emission, we used an iterative 2D maximum-likelihood approach that allows us to build a phenomenological model of the emission by summing a number of different spatial components. We show that the emission correlated with dense matter covers the full CMZ and that its flux is about half the total diffuse emission flux. We also detect some emission at higher latitude that is likely produced by hadronic collisions of CRs in less dense regions of the GC interstellar medium. We detect an additional emission component centred on the GC and extending over about 15 pc that is consistent with the existence of a strong CR density gradient and confirms the presence of a CR accelerator at the very centre of our Galaxy. We show that the spectrum of full ridge diffuse emission is compatible with that previously derived from the central regions, suggesting that a single population of particles fills the entire CMZ. Finally, we report the discovery of a VHE gamma-ray source near the GC radio arc and argue that it is produced by the pulsar wind nebula candidate G0.13-0.11.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 37

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view