SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Liu Yueqiang) "

Search: WFRF:(Liu Yueqiang)

  • Result 1-10 of 126
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Bombarda, F., et al. (author)
  • Runaway electron beam control
  • 2019
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Journal article (peer-reviewed)
  •  
3.
  • He, Y., et al. (author)
  • Combined effects of trapped energetic ions and resistive layer damping on the stability of the resistive wall mode
  • 2016
  • In: Physics of Plasmas. - : AIP Publishing. - 1089-7674 .- 1070-664X. ; 23:1
  • Journal article (peer-reviewed)abstract
    • A dispersion relation is derived for the stability of the resistive wall mode (RWM), which includes both the resistive layer damping physics and the toroidal precession drift resonance damping from energetic ions in tokamak plasmas. The dispersion relation is numerically solved for a model plasma, for the purpose of systematic investigation of the RWM stability in multi-dimensional plasma parameter space including the plasma resistivity, the radial location of the resistive wall, as well as the toroidal flow velocity. It is found that the toroidal favorable average curvature in the resistive layer contributes a significant stabilization of the RWM. This stabilization is further enhanced by adding the drift kinetic contribution from energetic ions. Furthermore, two traditionally assumed inner layer models are considered and compared in the dispersion relation, resulting in different predictions for the stability of the RWM.
  •  
4.
  •  
5.
  • 2018
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Research review (peer-reviewed)
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Chu, M.S., et al. (author)
  • Response of a resistive and rotating tokamak to external magnetic perturbations below the Alfven frequency
  • 2011
  • In: Nuclear Fusion. - 1741-4326 .- 0029-5515. ; 51, s. 073036-
  • Journal article (peer-reviewed)abstract
    • Motivated by the recent experimental observation that plasma stability can be improved by external magnetic perturbations, the general problem of plasma response to external magnetic perturbations is investigated. Different (vacuum, ideal and resistive) plasma response models are considered and compared. Plasma response, in experiments where stabilization was achieved, is obtained through computation using the MARS-F code, with a plasma model that includes both plasma resistivity and rotation. The resultant magnetic field line stochasticity is much reduced from that obtained formerly using the vacuum plasma model. This reduced stochasticity is more consistent with the favourable experimental observation of enhanced stability. Examples are given for the response of an ITER plasma to perturbations generated by the correction coils; and the response of a plasma to external coils (antenna) up to the Alfvén frequency.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 126

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view