SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Yun) ;hsvcat:2"

Sökning: WFRF:(Liu Yun) > Teknik

  • Resultat 1-10 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Quanli, 1988, et al. (författare)
  • Current state of aromatics production using yeast: achievements and challenges
  • 2020
  • Ingår i: Current Opinion in Biotechnology. - : Elsevier BV. - 0958-1669 .- 1879-0429. ; 65, s. 65-74
  • Forskningsöversikt (refereegranskat)abstract
    • Aromatics find a range of applications in the chemical, food, cosmetic and pharmaceutical industries. While production of aromatics on the current market heavily relies on petroleum-derived chemical processes or direct extraction from plants, there is an increasing demand for establishing new renewable and sustainable sources of aromatics. To this end, microbial cell factories-mediated bioproduction using abundant feedstocks comprises a highly promising alternative to aromatics production. In this review, we provide the recent development of de novo biosynthesis of aromatics derived from the shikimate pathway in yeasts, including the model Saccharomyces cerevisiae as well as other non-conventional species. Moreover, we discuss how evolved metabolic engineering tools and strategies contribute to the construction and optimization of aromatics cell factories.
  •  
2.
  • Liu, Quanli, 1988, et al. (författare)
  • De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Isoflavonoids comprise a class of plant natural products with great nutraceutical, pharmaceutical and agricultural significance. Their low abundance in nature and structural complexity however hampers access to these phytochemicals through traditional crop-based manufacturing or chemical synthesis. Microbial bioproduction therefore represents an attractive alternative. Here, we engineer the metabolism of Saccharomyces cerevisiae to become a platform for efficient production of daidzein, a core chemical scaffold for isoflavonoid biosynthesis, and demonstrate its application towards producing bioactive glucosides from glucose, following the screening-reconstruction-application engineering framework. First, we rebuild daidzein biosynthesis in yeast and its production is then improved by 94-fold through screening biosynthetic enzymes, identifying rate-limiting steps, implementing dynamic control, engineering substrate trafficking and fine-tuning competing metabolic processes. The optimized strain produces up to 85.4 mg L−1 of daidzein and introducing plant glycosyltransferases in this strain results in production of bioactive puerarin (72.8 mg L−1) and daidzin (73.2 mg L−1). Our work provides a promising step towards developing synthetic yeast cell factories for de novo biosynthesis of value-added isoflavonoids and the multi-phased framework may be extended to engineer pathways of complex natural products in other microbial hosts.
  •  
3.
  • Pereira, Rui, 1986, et al. (författare)
  • Metabolic Engineering of Yeast
  • 2021
  • Ingår i: Metabolic Engineering: Concepts and Applications: Volume 13a and 13b. - : Wiley. ; 13, s. 689-733
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • This chapter focuses on a few examples that can serve as illustrations of how powerful yeast metabolic engineering stands today. Yeast, especially S. cerevisiae, plays an essential role in bioethanol production. Rapid ethanol production by yeast cells makes the fermentation process less susceptible to contamination. Higher alcohols are attractive due to some advantages compared with bioethanol, such as higher energy density, better blending into gasoline, higher octane value, lower hygroscopicity, and less corrosivity. The ethanol production process in the industry is mainly achieved through simultaneous saccharification and fermentation. Production of insulin, by volume the largest pharmaceutical protein produced, has paved the way for a wide use of S. cerevisiae for production of recombinant proteins. Virus like particles are proteins of virus capsid, which are produced by recombinant DNA technology and are important for the development of viral vaccines as they can self-assemble and display similar immunogenic properties as native viruses.
  •  
4.
  • Ma, Tian, et al. (författare)
  • Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene
  • 2019
  • Ingår i: Metabolic Engineering. - : Elsevier BV. - 1096-7176 .- 1096-7184. ; 52, s. 134-142
  • Tidskriftsartikel (refereegranskat)abstract
    • Saccharomyces cerevisiae is an efficient host for natural-compound production and preferentially employed in academic studies and bioindustries. However, S. cerevisiae exhibits limited production capacity for lipophilic natural products, especially compounds that accumulate intracellularly, such as polyketides and carotenoids, with some engineered compounds displaying cytotoxicity. In this study, we used a nature-inspired strategy to establish an effective platform to improve lipid oil–triacylglycerol (TAG) metabolism and enable increased lycopene accumulation. Through systematic traditional engineering methods, we achieved relatively high-level production at 56.2 mg lycopene/g cell dry weight (cdw). To focus on TAG metabolism in order to increase lycopene accumulation, we overexpressed key genes associated with fatty acid synthesis and TAG production, followed by modulation of TAG fatty acyl composition by overexpressing a fatty acid desaturase (OLE1) and deletion of Seipin (FLD1), which regulates lipid-droplet size. Results showed that the engineered strain produced 70.5 mg lycopene/g cdw, a 25% increase relative to the original high-yield strain, with lycopene production reaching 2.37 g/L and 73.3 mg/g cdw in fed-batch fermentation and representing the highest lycopene yield in S. cerevisiae reported to date. These findings offer an effective strategy for extended systematic metabolic engineering through lipid engineering.
  •  
5.
  • Qin, Ning, et al. (författare)
  • Increased CO 2 fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast
  • 2024
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • CO2 fixation plays a key role to make biobased production cost competitive. Here, we use 3-hydroxypropionic acid (3-HP) to showcase how CO2 fixation enables approaching theoretical-yield production. Using genome-scale metabolic models to calculate the production envelope, we demonstrate that the provision of bicarbonate, formed from CO2, restricts previous attempts for high yield production of 3-HP. We thus develop multiple strategies for bicarbonate uptake, including the identification of Sul1 as a potential bicarbonate transporter, domain swapping of malonyl-CoA reductase, identification of Esbp6 as a potential 3-HP exporter, and deletion of Uga1 to prevent 3-HP degradation. The combined rational engineering increases 3-HP production from 0.14 g/L to 11.25 g/L in shake flask using 20 g/L glucose, approaching the maximum theoretical yield with concurrent biomass formation. The engineered yeast forms the basis for commercialization of bio-acrylic acid, while our CO2 fixation strategies pave the way for CO2 being used as the sole carbon source.
  •  
6.
  • Yu, Tao, 1988, et al. (författare)
  • Metabolic reconfiguration enables synthetic reductive metabolism in yeast
  • 2022
  • Ingår i: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 4:11, s. 1551-1559
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell proliferation requires the integration of catabolic processes to provide energy, redox power and biosynthetic precursors. Here we show how the combination of rational design, metabolic rewiring and recombinant expression enables the establishment of a decarboxylation cycle in the yeast cytoplasm. This metabolic cycle can support growth by supplying energy and increased provision of NADPH or NADH in the cytosol, which can support the production of highly reduced chemicals such as glycerol, succinate and free fatty acids. With this approach, free fatty acid yield reached 40% of theoretical yield, which is the highest yield reported for Saccharomyces cerevisiae to our knowledge. This study reports the implementation of a synthetic decarboxylation cycle in the yeast cytosol, and its application in achieving high yields of valuable chemicals in cell factories. Our study also shows that, despite extensive regulation of catabolism in yeast, it is possible to rewire the energy metabolism, illustrating the power of biodesign.
  •  
7.
  • Chen, Yuqing, et al. (författare)
  • A review of lithium-ion battery safety concerns : the issues, strategies, and testing standards
  • 2021
  • Ingår i: Journal of Energy Chemistry. - : Elsevier. - 2095-4956 .- 2096-885X. ; 59, s. 83-99
  • Tidskriftsartikel (refereegranskat)abstract
    • Efficient and reliable energy storage systems are crucial for our modern society. Lithium-ion batteries (LIBs) with excellent performance are widely used in portable electronics and electric vehicles (EVs), but frequent fires and explosions limit their further and more widespread applications. This review summarizes aspects of LIB safety and discusses the related issues, strategies, and testing standards. Specifically, it begins with a brief introduction to LIB working principles and cell structures, and then provides an overview of the notorious thermal runaway, with an emphasis on the effects of mechanical, electrical, and thermal abuse. The following sections examine strategies for improving cell safety, including approaches through cell chemistry, cooling, and balancing, afterwards describing current safety standards and corresponding tests. The review concludes with insights into potential future developments and the prospects for safer LIBs.
  •  
8.
  • Liu, Zihe, et al. (författare)
  • Third-generation biorefineries as the means to produce fuels and chemicals from CO2
  • 2020
  • Ingår i: Nature Catalysis. - : Springer Science and Business Media LLC. - 2520-1158. ; 3:3, s. 274-288
  • Forskningsöversikt (refereegranskat)abstract
    • Concerns regarding petroleum depletion and global climate change caused by greenhouse gas emissions have spurred interest in renewable alternatives to fossil fuels. Third-generation (3G) biorefineries aim to utilize microbial cell factories to convert renewable energies and atmospheric CO2 into fuels and chemicals, and hence represent a route for assessing fuels and chemicals in a carbon-neutral manner. However, to establish processes competitive with the petroleum industry, it is important to clarify/evaluate/identify the most promising CO2 fixation pathways, the most appropriate CO2 utilization models and the necessary productivity levels. Here, we discuss the latest advances in 3G biorefineries. Following an overview of applications of CO2 feedstocks, mainly from flue gas and waste gasification, we review prominent opportunities and barriers in CO2 fixation and energy capture. We then summarize reported CO2-based products and industries, and describe trends and key challenges for future advancement of 3G biorefineries. A shift from sugar-based feedstocks and biomass to the use of atmospheric CO2 for the bioproduction of fuels and chemicals is desirable. This Review describes how microorganisms can be engineered for CO2 fixation and industrial valorization of this key molecule.
  •  
9.
  • Fu, Ying, 1964-, et al. (författare)
  • Endocytic pathway of vascular cell adhesion molecule 1 in human umbilical vein endothelial cell identified in vitro by using functionalized nontoxic fluorescent quantum dots
  • 2019
  • Ingår i: Sensors and actuators. B, Chemical. - : Elsevier B.V.. - 0925-4005 .- 1873-3077. ; 297
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies about vascular cell adhesion molecule 1 (VCAM1) in tumor growth, metastasis, and angiogenesis suggest that targeting VCAM1 expression is an attractive strategy for diagnosis and anti-tumor therapy. However, the endocytic pathway of VCAM1 in vascular cells has not been well characterized. In this study we visualize the endocytic pathway of tumor necrosis factor α (TNFα) induced VCAM1 in human umbilical vein endothelial cell (HUVEC) in vitro using 5-carboxyfluorescein labeled VCAM1 binding peptides and fluorescent water-dispersible 3-mercaptopropionic acid (3MPA)-coated CdSe-CdS/Cd0.5Zn0.5S/ZnS core–multishell nontoxic quantum dots (3MPA-QDs) functionalized with VCAM1 binding peptides. Clear key in vitro observations are as follows: (a) 3MPA-QDs functionalized with VCAM1 binding peptides, denoted as VQDs, adhered and aggregated cumulatively to cell membrane around 2 h after VQD deposition to cell culture medium and were found in lysosomes in TNFα-treated HUVECs approximately 24 h after VQD deposition; (b) VQDs remained in TNFα-treated HUVECs for the whole 16 days of the experimental observation period; (c) quite differently, 3MPA-QDs were endocytosed then exocytosed by HUVECs via endosomes in about 24–48 h after 3MPA-QD deposition. Our study suggests that VCAM1 molecules, initially expressed on cell membrane induced by TNFα treatment, are internalized into lysosomes. This provides a novel means to deliver materials to lysosomes such as enzyme replacement therapy. Moreover, our meticulous sensing methodology of devising fluorescent nontoxic QDs advances biosensing technique for studying cellular activities in vitro and in vivo. © 2019 The Authors
  •  
10.
  • Hong, Yue, et al. (författare)
  • Damping Effect Coupled with the Internal Translator Mass of Linear Generator-Based Wave Energy Converters
  • 2020
  • Ingår i: Energies. - : MDPI AG. - 1996-1073. ; 13:17
  • Tidskriftsartikel (refereegranskat)abstract
    • The damping effect, induced inside the linear generator, is a vital factor to improve the conversion efficiency of wave energy converters (WEC). As part of the mechanical design, the translator mass affects the damping force and eventually affects the performance of the WEC by converting wave energy into electricity. This paper proposes research on the damping effect coupled with translator mass regarding the generated power from WEC. Complicated influences from ocean wave climates along the west coast of Sweden are also included. This paper first compares three cases of translator mass with varied damping effects. A further investigation on coupling effects is performed using annual energy absorption under a series of sea states. Results suggest that a heavier translator may promote the damping effect and therefore improve the power production. However, the hinder effect is also observed and analyzed in specific cases. In this paper, the variations in the optimal damping coefficient are observed and discussed along with different cases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 34
Typ av publikation
tidskriftsartikel (28)
konferensbidrag (2)
forskningsöversikt (2)
bokkapitel (2)
Typ av innehåll
refereegranskat (32)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Chen, Yun, 1978 (17)
Nielsen, Jens B, 196 ... (10)
Bu, Junling (3)
Froslev Nielsen, Jen ... (2)
Campbell, Kate, 1987 (2)
Zhu, Bin (1)
visa fler...
Wang, Kai (1)
Segerstedt, Anders (1)
Wang, Yi (1)
Li, Haibo (1)
Liu, Y. Y. (1)
Brismar, Hjalmar (1)
Wang, Qin (1)
Eriksson, Mikael (1)
Afzal, Muhammad (1)
Xia, Chen (1)
Wang, Baoyuan (1)
Zhang, Wei (1)
Savolainen, Otto, 19 ... (1)
Zhang, Siyuan (1)
Ge, Q. (1)
Cheung, Ocean (1)
Liu, Qingling (1)
Larsson, Christer, 1 ... (1)
Tavajohi Hassan Kiad ... (1)
Liu, Bo (1)
Siewers, Verena, 197 ... (1)
Zhao, Qian (1)
Wang, Li (1)
Liu, Ping (1)
Boström, Cecilia (1)
Jiang, Wei (1)
Wang, Yun (1)
Wang, Jian (1)
Ynnerman, Anders (1)
Tartik, Musa (1)
Waters, Rafael (1)
Liu, Jing (1)
Fujiwara, Takanori (1)
Li, Yun (1)
Zhang, Lu (1)
Yang, Lei (1)
Wang, Hao (1)
Li, Xuan (1)
Wei, Yongjun (1)
Yang, Jian (1)
Liu, Yanyan (1)
Zheng, Jian (1)
Wallenius, janne, 19 ... (1)
Zhang, Le (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (19)
Kungliga Tekniska Högskolan (9)
Uppsala universitet (2)
Göteborgs universitet (1)
Umeå universitet (1)
Luleå tekniska universitet (1)
visa fler...
Linköpings universitet (1)
Lunds universitet (1)
RISE (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (34)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (15)
Medicin och hälsovetenskap (3)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy