SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lizon J. L) "

Sökning: WFRF:(Lizon J. L)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Jong, R. S., et al. (författare)
  • 4MOST : Project overview and information for the First Call for Proposals
  • 2019
  • Ingår i: The Messenger. - : European Southern Observatory. - 0722-6691. ; 175, s. 3-11
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metre-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.2 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs (R = λ/Δλ ~ 6500), and 812 fibres transferring light to the high-resolution spectrograph (R ~ 20 000). After a description of the instrument and its expected performance, a short overview is given of its operational scheme and planned 4MOST Consortium science; these aspects are covered in more detail in other articles in this edition of The Messenger. Finally, the processes, schedules, and policies concerning the selection of ESO Community Surveys are presented, commencing with a singular opportunity to submit Letters of Intent for Public Surveys during the first five years of 4MOST operations.
  •  
2.
  • Morales, J. C., et al. (författare)
  • A giant exoplanet orbiting a very-low-mass star challenges planet formation models
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 365:6460, s. 1441-1445
  • Tidskriftsartikel (refereegranskat)abstract
    • Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts constraints on the planet accretion and migration rates. Disk instabilities may be more efficient in forming planets than previously thought.
  •  
3.
  • Dorn, R. J., et al. (författare)
  • CRIRES+ on sky at the ESO Very Large Telescope : Observing the Universe at infrared wavelengths and high spectral resolution
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Tidskriftsartikel (refereegranskat)abstract
    • The CRyogenic InfraRed Echelle Spectrograph (CRIRES) Upgrade project CRIRES+ extended the capabilities of CRIRES. It transformed this VLT instrument into a cross-dispersed spectrograph to increase the wavelength range that is covered simultaneously by up to a factor of ten. In addition, a new detector focal plane array of three Hawaii 2RG detectors with a 5.3 mu m cutoff wavelength replaced the existing detectors. Amongst many other improvements, a new spectropolarimetric unit was added and the calibration system has been enhanced. The instrument was installed at the VLT on Unit Telescope 3 at the beginning of 2020 and successfully commissioned and verified for science operations during 2021, partly remotely from Europe due to the COVID-19 pandemic. The instrument was subsequently offered to the community from October 2021 onwards. This article describes the performance and capabilities of the upgraded instrument and presents on sky results.
  •  
4.
  •  
5.
  • De Jong, R. S., et al. (författare)
  • 4MOST - 4-metre multi-object spectroscopic telescope
  • 2012
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819491473 ; , s. 84460T-
  • Konferensbidrag (refereegranskat)abstract
    • The 4MOST consortium is currently halfway through a Conceptual Design study for ESO with the aim to develop a wide-field (>3 square degree, goal >5 square degree), high-multiplex (>1500 fibres, goal 3000 fibres) spectroscopic survey facility for an ESO 4m-class telescope (VISTA). 4MOST will run permanently on the telescope to perform a 5 year public survey yielding more than 20 million spectra at resolution R∼5000 (λ=390-1000 nm) and more than 2 million spectra at R∼20,000 (395-456.5 nm & 587-673 nm). The 4MOST design is especially intended to complement three key all-sky, space-based observatories of prime European interest: Gaia, eROSITA and Euclid. Initial design and performance estimates for the wide-field corrector concepts are presented. Two fibre positioner concepts are being considered for 4MOST. The first one is a Phi-Theta system similar to ones used on existing and planned facilities. The second one is a new R-Theta concept with large patrol area. Both positioner concepts effectively address the issues of fibre focus and pupil pointing. The 4MOST spectrographs are fixed configuration two-arm spectrographs, with dedicated spectrographs for the high- and low-resolution fibres. A full facility simulator is being developed to guide trade-off decisions regarding the optimal field-of-view, number of fibres needed, and the relative fraction of high-to-low resolution fibres. The simulator takes mock catalogues with template spectra from Design Reference Surveys as starting point, calculates the output spectra based on a throughput simulator, assigns targets to fibres based on the capabilities of the fibre positioner designs, and calculates the required survey time by tiling the fields on the sky. The 4MOST consortium aims to deliver the full 4MOST facility by the end of 2018 and start delivering high-level data products for both consortium and ESO community targets a year later with yearly increments.
  •  
6.
  • Follert, R., et al. (författare)
  • CRIRES plus : a cross-dispersed high-resolution infrared spectrograph for the ESO VLT
  • 2014
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V. - : SPIE. - 9780819496157
  • Konferensbidrag (refereegranskat)abstract
    • High-resolution infrared spectroscopy plays an important role in astrophysics from the search for exoplanets to cosmology. Yet, many existing infrared spectrographs are limited by a rather small simultaneous wavelength coverage. The AO assisted CRIRES instrument, installed at the ESO VLT on Paranal, is one of the few IR (0.92-5.2 mu m) high-resolution spectrographs in operation since 2006. However it has a limitation that hampers its efficient use: the wavelength range covered in a single exposure is limited to similar to 15 nanometers. The CRIRES Upgrade project (CRIRES+) will transform CRIRES into a cross-dispersed spectrograph and will also add new capabilities. By introducing cross-dispersion elements the simultaneously covered wavelength range will be increased by at least a factor of 10 with respect to the present configuration, while the operational wavelength range will be preserved. For advanced wavelength calibration, new custom made absorption gas cells and etalons will be added. A spectro-polarimetric unit will allow one for the first time to record circularly polarized spectra at the highest spectral resolution. This will be all supported by a new data reduction software which will allow the community to take full advantage of the new capabilities of CRIRES+.
  •  
7.
  • Oliva, E., et al. (författare)
  • Concept and optical design of the cross-disperser module for CRIRES
  • 2014
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V. - : SPIE. - 9780819496157
  • Konferensbidrag (refereegranskat)abstract
    • CRIRES, the ESO high resolution infrared spectrometer, is a unique instrument which allows astronomers to access a parameter space which up to now was largely uncharted. In its current setup, it consists of a single-order spectrograph providing long-slit, single-order spectroscopy with resolving power up to R=100,000 over a quite narrow spectral range. This has resulted in sub-optimal efficiency and use of telescope time for all the scientific programs requiring broad spectral coverage of compact objects (e.g. chemical abundances of stars and intergalactic medium, search and characterization of extra-solar planets). To overcome these limitations, a consortium was set-up for upgrading CRIRES to a cross-dispersed spectrometer, called CRIRES+. This paper presents the updated optical design of the cross-dispersion module for CRIRES+. This new module can be mounted in place of the current pre-disperser unit. The new system yields a factor of >10 increase in simultaneous spectral coverage and maintains a quite long slit (10"), ideal for observations of extended sources and for precise sky-background subtraction.
  •  
8.
  • Mawet, Dimitri, et al. (författare)
  • L '-band AGPM vector vortex coronagraph's first light on VLT/NACO Discovery of a late-type companion at two beamwidths from an F0V star
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 552, s. L13-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. High contrast imaging has thoroughly combed through the limited search space accessible with first-generation ground-based adaptive optics instruments and the Hubble Space Telescope. Only a few objects were discovered, and many non-detections reported and statistically interpreted. The field is now in need of a technological breakthrough. Aims. Our aim is to open a new search space with first-generation systems such as NACO at the Very Large Telescope, by providing ground-breaking inner working angle (IWA) capabilities in the L' band. The L' band is a sweet spot for high contrast coronagraphy since the planet-to-star brightness ratio is favorable, while the Strehl ratio is naturally higher. Methods. An annular groove phase mask (AGPM) vector vortex coronagraph optimized for the L' band made from diamond subwavelength gratings was manufactured and qualified in the lab. The AGPM enables high contrast imaging at very small IWA, potentially being the key to unexplored discovery space. Results. Here we present the installation and successful on-sky tests of an L'-band AGPM coronagraph on NACO. Using angular differential imaging, which is well suited to the rotational symmetry of the AGPM, we demonstrated a Delta L' > 7.5 mag contrast from an IWA similar or equal to 0 ''.09 onwards, during average seeing conditions, and for total integration times of a few hundred seconds.
  •  
9.
  • Seemann, U., et al. (författare)
  • Wavelength calibration from 1-5 mu m for the CRIRES plus high-resolution spectrograph at the VLT
  • 2014
  • Ingår i: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V. - : SPIE. - 9780819496157
  • Konferensbidrag (refereegranskat)abstract
    • CRIRES at the VLT is one of the few adaptive optics enabled instruments that offer a resolving power of 10 5 from 1 - 5 mu m. An instrument upgrade (CRIRES+) is proposed to implement cross-dispersion capabilities, spectro-polarimetry modes, a new detector mosaic, and a new gas absorption cell. CRIRES+ will boost the simultaneous wavelength coverage of the current instrument (similar to lambda/70 in a single-order) by a factor of greater than or similar to 10 in the cross-dispersed configuration, while still retaining a 10 arcsec slit suitable for long-slit spectroscopy. CRIRES+ dramatically enhances the instrument's observing efficiency, and opens new scientific opportunities. These include high-precision radial-velocity studies on the 3m/s level to characterize extra-solar planets and their athmospheres, which demand for specialized, highly accurate wavelength calibration techniques. In this paper, we present a newly developed absorption gas-cell to enable high-precision wavelength calibration for CRIRES+. We also discuss the strategies and developments to cover the full operational spectral range (1-5 mu m), employing hollow-cathode emission lamps, Fabry-Perot etalons, and absorption gas-cells.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy