SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ljung Aust Mikael 1973) ;mspu:(article)"

Sökning: WFRF:(Ljung Aust Mikael 1973) > Tidskriftsartikel

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Engström, Johan A Skifs, 1973, et al. (författare)
  • Effects of working memory load and repeated scenario exposure on emergency braking performance
  • 2010
  • Ingår i: Human Factors. - : SAGE Publications. - 1547-8181 .- 0018-7208. ; 52:5, s. 551-559
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The objective of the present study was to examine the effect of working memory load on drivers' responses to a suddenly braking lead vehicle and whether this effect (if any) is moderated by repeated scenario exposure. Background: Several experimental studies have found delayed braking responses to lead vehicle braking events during concurrent performance of nonvisual, working memory-loading tasks, such as hands-free phone conversation. However, the common use of repeated, and hence somewhat expected, braking events may undermine the generalizability of these results to naturalistic, unexpected, emergency braking scenarios. Method: A critical lead vehicle braking scenario was implemented in a fixed-based simulator. The effects of working memory load and repeated scenario exposure on braking performance were examined. Results: Brake response time was decomposed into accelerator pedal release time and accelerator-to-brake pedal movement time. Accelerator pedal release times were strongly reduced with repeated scenario exposure and were delayed by working memory load with a small but significant amount (178 ms). The two factors did not interact. There were no effects on accelerator-to-brake pedal movement time. Conclusion:The results suggest that effects of working memory load on response performance obtained from repeated critical lead vehicle braking scenarios may be validly generalized to real world unexpected events. Application: The results have important implications for the interpretation of braking performance in experimental settings, in particular in the context of safety-related evaluation of in-vehicle information and communication technologies. © 2010, Human Factors and Ergonomics Society.
  •  
2.
  • Ljung Aust, Mikael, 1973, et al. (författare)
  • A conceptual framework for requirement specification and evaluation of active safety functions
  • 2011
  • Ingår i: Theoretical Issues in Ergonomics Science. - : Informa UK Limited. - 1464-536X .- 1463-922X. ; 12:1, s. 44-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Active safety functions intended to prevent vehicle crashes are becoming increasingly prominent in traffic safety. Successful evaluation of their effects needs to be based on a conceptual framework, i.e. agreed-upon concepts and principles for defining evaluation scenarios, performance metrics and pass/fail criteria. The aim of this paper is to suggest some initial ideas toward such a conceptual framework for active safety function evaluation, based on a central concept termed 'situational control'. Situational control represents the degree of control jointly exerted by a driver and a vehicle over the development of specific traffic situations. The proposed framework is intended to be applicable to the whole evaluation process, from 'translation' of accident data into evaluation scenarios and definition of evaluation hypotheses, to selection of performance metrics and criteria. It is also meant to be generic, i.e. applicable to driving simulator and test track experiments as well as field operational tests.
  •  
3.
  • Ljung Aust, Mikael, 1973, et al. (författare)
  • Effects of forward collision warning and repeated event exposure on emergency braking
  • 2013
  • Ingår i: Transportation Research Part F: Traffic Psychology and Behaviour. - : Elsevier BV. - 1369-8478. ; 18, s. 34-46
  • Tidskriftsartikel (refereegranskat)abstract
    • Many experimental studies use repeated lead vehicle braking events to study the effects of forward collision warning (FCW) systems. It can, however, be argued that the use of repeated events induce expectancies and anticipatory behaviour that may undermine validity in terms of generalisability to real-world, naturalistic, emergency braking events. The main objective of the present study was to examine to what extent the effect of FCW on response performance is moderated by repeated exposure to a critical lead vehicle braking event. A further objective was to examine if these effects depended on event criticality, here defined as the available time headway when the lead vehicle starts to brake. A critical lead vehicle braking event was implemented in a moving-base simulator. The effects of FCW, repeated event exposure and initial time headway on driver response times and safety margins were examined. The results showed that the effect of FCW depended strongly on both repeated exposure and initial time headway. In particular, no effects of FCW were found for the first exposure, while strong effects occurred when the scenario was repeated. This was interpreted in terms of a switch from closed-loop responses triggered reactively by the situation, towards an open-loop strategy where subjects with FCW responded proactively directly to the warning. It was also found that initial time headway strongly determined response times in closed-loop conditions but not in open-loop conditions. These results raise a number of methodological issues pertaining to the design of experimental studies with the aim of evaluating the effects of active safety systems. In particular, the implementation of scenario exposure and criticality must be carefully considered.
  •  
4.
  • Nilsson, Emma, 1982, et al. (författare)
  • Effects of cognitive load on response time in an unexpected lead vehicle braking scenario and the detection response task (DRT)
  • 2018
  • Ingår i: Transportation Research Part F: Traffic Psychology and Behaviour. - : Elsevier BV. - 1369-8478. ; 59, s. 463-474
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of cognitive distraction on traffic safety and driver performance are unclear and under debate. Based on increased response times to stimuli or events in controlled driving experiments, concerns, primarily about cell phone usage during driving, have been raised. But while cognitive load repeatedly have been shown to increase response times in artificial tasks such as the Detection Response Task (DRT), the generalizability of the results to response times in critical traffic situations is questionable. Method: Two experiments were conducted. In Experiment 1, response times in the DRT were measured during simulated driving with and without execution of a cognitively loading secondary task. In Experiment 2, brake response times in an unexpected lead vehicle braking scenario were measured with and without the same cognitively loading task. Results: In Experiment 1, DRT response times increased with increased level of cognitive load. In Experiment 2, brake response times were unaffected by cognitive load. Conclusion: The response time results from the artificial DRT did not generalize to the critical lead vehicle braking scenario. This finding can possibly be explained by the cognitive control hypothesis, which suggests that cognitive load selectively impairs driving subtasks that rely on cognitive control (i.e. novel or inconsistent tasks) but leaves automatic performance unaffected (Engström, Markkula, Victor, & Merat, 2017). While the DRT responses, because of the task novelty, can be assumed to require cognitive control, responses to visually expanding objects, such as a braking lead vehicle with short time headway, are triggered automatically. Common interpretations of the effect of cognitive load on traffic safety thus need to be re-examined. It seems inappropriate to generalize from effects of cognitive load on DRT, or other artificial laboratory tasks that rely on cognitive control, to unexpected real-world situations where responses are triggered primarily by looming cues.
  •  
5.
  • Habibovic, Azra, 1982, et al. (författare)
  • Driver behavior in car-to-pedestrian incidents: An application of the Driving Reliability and Error Analysis Method (DREAM)
  • 2013
  • Ingår i: Accident Analysis and Prevention. - : Elsevier BV. - 0001-4575. ; 50, s. 554-565
  • Tidskriftsartikel (refereegranskat)abstract
    • To develop relevant road safety countermeasures, it is necessary to first obtain an in-depth understanding of how and why safety-critical situations such as incidents, near-crashes, and crashes occur. Video-recordings from naturalistic driving studies provide detailed information on events and circumstances prior to such situations that is difficult to obtain from traditional crash investigations, at least when it comes to the observable driver behavior. This study analyzed causation in 90 video-recordings of car-to-pedestrian incidents captured by onboard cameras in a naturalistic driving study in Japan. The Driving Reliability and Error Analysis Method (DREAM) was modified and used to identify contributing factors and causation patterns in these incidents. Two main causation patterns were found. In intersections, drivers failed to recognize the presence of the conflict pedestrian due to visual obstructions and/or because their attention was allocated towards something other than the conflict pedestrian. In incidents away from intersections, this pattern reoccurred along with another pattern showing that pedestrians often behaved in unexpected ways. These patterns indicate that an interactive advanced driver assistance system (ADAS) able to redirect the driver's attention could have averted many of the intersection incidents, while autonomous systems may be needed away from intersections. Cooperative ADAS may be needed to address issues raised by visual obstructions.
  •  
6.
  • Ljung Aust, Mikael, 1973, et al. (författare)
  • Accident investigations for active safety at CHALMERS - new demands require new methodologies
  • 2007
  • Ingår i: Vehicle System Dynamics. - : Informa UK Limited. - 1744-5159 .- 0042-3114. ; 45:10, s. 881-894
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to develop efficient active safety systems, knowledge about what causes traffic accidents is required. One way to gather such knowledge is through traffic accident investigations. For the needs of active safety, most current accident investigation methodologies do not provide a sufficiently detailed or theoretically anchored analysis. Therefore, new studies need to be carried out using new theoretical frameworks and analysis methods. At CHALMERS, a new methodology called driving reliability and error analysis method has been developed and tried out during recent years. The methodology, as described and exemplified, shows good promise of meeting the needs of active safety accident investigation projects. Results from studies using the methodology also imply consequences for how benefit estimation of new active safety systems should be carried out.
  •  
7.
  • Ljung Aust, Mikael, 1973, et al. (författare)
  • Fatal intersection crashes in Norway: Patterns in Contributing Factors and Data Collection Challenges
  • 2012
  • Ingår i: Accident Analysis and Prevention. - : Elsevier BV. - 0001-4575. ; 45, s. 782-791
  • Tidskriftsartikel (refereegranskat)abstract
    • Fatal motor vehicle intersection crashes occurring in Norway in the years 2005–2007 were analyzed to identify causation patterns among their underlying contributing factors, and also to assess if the data collection and documentation procedures used by the Norwegian in-depth investigation teams produces the information necessary to do causation pattern analysis. 28 fatal accidents were analyzed. Causation charts of contributing factors were first coded for each driver in each crash using the Driving Reliability and Error Analysis Method (DREAM). Next, the charts were aggregated based on a combination of conflict types and whether the driver was going straight or turning. Analysis results indicate that drivers who were performing a turning maneuver in these crashes faced perception difficulties and unexpected behavior from the primary conflict vehicle, while at the same time trying to negotiate a demanding traffic situation. Drivers who were going straight on the other hand had less perception difficulties but largely expect anyturning drivers to yield, which led to either slow reaction or no reaction at all. In terms of common contributing factors, those often pointed to in literature as contributing to fatal crashes, e.g. high speed, drugs and/or alcohol and inadequate driver training, contributed in 12 of 28 accidents. This confirmstheir prevalence, but also shows that most drivers end up in these situations due to combinations of less auspicious contributing factors. In terms of data collection and documentation, there was an asymmetry in terms of reported obstructions to view due to signposts and vegetation. These were frequently reported as contributing for turning drivers, but rarely reported as contributing for their counterparts in the same crashes. This probably reflects an involuntary focus of the analyst on identifying contributing factors for the driver held legally liable, while less attention is paid to the driver judged not at fault. Since who toblame often is irrelevant from a countermeasure development point of view, this underlying investigator approach needs to be addressed to avoid future bias in crash investigation reports.
  •  
8.
  • Ljung Aust, Mikael, 1973 (författare)
  • Generalization of case studies in road traffic when defining pre-crash scenarios for active safety function evaluation
  • 2010
  • Ingår i: Accident Analysis and Prevention. - : Elsevier BV. - 0001-4575. ; 42:4, s. 1172-1183
  • Tidskriftsartikel (refereegranskat)abstract
    • To define pre-crash scenarios for evaluation of active safety functions, data from crash investigations is often used. Typical data sources include official databases with police reported crashes (macroscopic data) and in-depth case studies (microscopic data). Macroscopic data is often representative but has little detail on causation, while the opposite is true of microscopic data. Combining the sources by coupling causation information from a set of case studies to a macroscopic crash type would therefore seem ideal. For the coupling to be valid however, it must be verified that the selected case study set is representative of the crash type. The aim of this study is to describe and test a new methodology for such verification by means of an intermediate layer of representatively sampled crash information (questionnaire responses from crash involved drivers). The methodology was applied to intersection crashes. For the data sets used, the similarity in crash causation for case studies and questionnaire crashes, together with the context similarity for questionnaire crashes and the macroscopic crash type, was sufficient to argue that the case studies were representative of the crash type. While results must be considered preliminary given the limited data sets used, the proposed methodology shows promise for future work related to defining pre-crash scenarios for ADAS evaluation. (C) 2010 Elsevier Ltd. All rights reserved.
  •  
9.
  • Nilsson, Emma, 1982, et al. (författare)
  • Let Complexity Bring Clarity: A Multidimensional Assessment of Cognitive Load Using Physiological Measures
  • 2022
  • Ingår i: Frontiers in Neuroergonomics. - : Frontiers Media SA. - 2673-6195. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of cognitive load on driver behavior and traffic safety are unclear and in need of further investigation. Reliable measures of cognitive load for use in research and, subsequently, in the development and implementation of driver monitoring systems are therefore sought. Physiological measures are of interest since they can provide continuous recordings of driver state. Currently, however, a few issues related to their use in this context are not usually taken into consideration, despite being well-known. First, cognitive load is a multidimensional construct consisting of many mental responses (cognitive load components) to added task demand. Yet, researchers treat it as unidimensional. Second, cognitive load does not occur in isolation; rather, it is part of a complex response to task demands in a specific operational setting. Third, physiological measures typically correlate with more than one mental state, limiting the inferences that can be made from them individually. We suggest that acknowledging these issues and studying multiple mental responses using multiple physiological measures and independent variables will lead to greatly improved measurability of cognitive load. To demonstrate the potential of this approach, we used data from a driving simulator study in which a number of physiological measures (heart rate, heart rate variability, breathing rate, skin conductance, pupil diameter, eye blink rate, eye blink duration, EEG alpha power, and EEG theta power) were analyzed. Participants performed a cognitively loading n-back task at two levels of difficulty while driving through three different traffic scenarios, each repeated four times. Cognitive load components and other coinciding mental responses were assessed by considering response patterns of multiple physiological measures in relation to multiple independent variables. With this approach, the construct validity of cognitive load is improved, which is important for interpreting results accurately. Also, the use of multiple measures and independent variables makes the measurements (when analyzed jointly) more diagnostic—that is, better able to distinguish between different cognitive load components. This in turn improves the overall external validity. With more detailed, diagnostic, and valid measures of cognitive load, the effects of cognitive load on traffic safety can be better understood, and hence possibly mitigated.
  •  
10.
  • Nilsson, Emma, 1982, et al. (författare)
  • On-to-off-path gaze shift cancellations lead to gaze concentration in cognitively loaded car drivers: A simulator study exploring gaze patterns in relation to a cognitive task and the traffic environment
  • 2020
  • Ingår i: Transportation Research Part F: Traffic Psychology and Behaviour. - : Elsevier BV. - 1369-8478. ; 75, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Appropriate visual behaviour is necessary for safe driving. Many previous studies have found that when performing non-visual cognitive tasks, drivers typically display an increased amount of on-path glances, along with a deteriorated visual scanning pattern towards potential hazards at locations outside their future travel path (off-path locations). This is often referred to as a gaze concentration effect. However, what has not been explored is more precisely how and when gaze concentration arises in relation to the cognitive task, and to what extent the timing of glances towards traffic-situation relevant off-path locations is affected. To investigate these specific topics, a driving simulator study was carried out. Car drivers’ visual behaviour during execution of a cognitive task (n-back) was studied during two traffic scenarios; one when driving through an intersection and one when passing a hidden exit. Aside from the expected gaze concentration effect, several novel findings that may explain this effect were observed. It was found that gaze shifts from an on-path to an off-path location were inhibited during increased cognitive load. However, gaze shifts in the other direction, that is, from an off-path to an on-path location, remained unaffected. This resulted in on-path glances increasing in duration, while off-path glances decreased in number. Furthermore, the inhibited off-path glances were typically not compensated for later. That is, off-path glances were cancelled, not delayed. This was the case both in relation to the cognitive task (near-term) and the traffic environment (far-term). There was thus a general reduction in the number of glances towards situationally relevant off-path locations, but the timing of the remaining glances was unaffected. These findings provide a deeper understanding of the mechanism behind gaze concentration and can contribute to both understanding and prediction of safety relevant effects of cognitive load in car drivers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy