SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ljungberg Michael) ;pers:(Sjögreen Gleisner Katarina)"

Sökning: WFRF:(Ljungberg Michael) > Sjögreen Gleisner Katarina

  • Resultat 1-10 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Garkavij, Michael, et al. (författare)
  • Lu-177-[DOTA0,Tyr3] Octreotate Therapy in Patients With Disseminated Neuroendocrine Tumors: Analysis of Dosimetry With Impact on Future Therapeutic Strategy
  • 2010
  • Ingår i: Cancer. - : Wiley. - 1097-0142 .- 0008-543X. ; 116:4, s. 1084-1092
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Lu-177-(DOTAO,Tyr3) octreotate is a new treatment modality for disseminated neuroendocrine tumors. According to a consensus protocol, the calculated maximally tolerated absorbed dose to the kidney should not exceed 27 Gy. In commonly used dosimetry methods, planar imaging is used for determination of the residence time, whereas the kidney mass is determined from a computed tomography (CT) scan. METHODS: Three different quantification methods were used to evaluate the absorbed dose to the kidneys. The first method involved common planar activity imaging, and the absorbed dose was calculated using the medical internal radiation dose (MIRD) formalism, using CT scan-based kidney masses. For this method, 2 region of interest locations for the background correction were investigated. The second method also included single-photon emission computed tomography (SPECT) data, which were used to scale the amplitude of the time-activity curve obtained from planar images. The absorbed dose was calculated as in the planar method. The third method used quantitative SPECT images converted to absorbed dose rate images, where the median absorbed dose rate in the kidneys was calculated in a volume of interest defined over the renal cortex. RESULTS: For some patients, the results showed a large difference in calculated kidney-absorbed doses, depending on the dosimetry method. The 2 SPECT-based methods generally gave consistent values, although the calculations were based on different assumptions. Dosimetry using the baseline planar method gave higher absorbed doses in all patients. The values obtained from planar imaging with a background region of interest placed adjacent to the kidneys were more consistent with dosimetry also including SPECT. For the accumulated tumor absorbed dose, the first 2 of the 4 planned therapy cycles made the major contribution. CONCLUSIONS: The results suggested that patients evaluated according to the conventional planar-based dosimetry method may have been undertreated compared with the other methods. Hematology and creatinine did not indicate any restriction for a more aggressive approach, which would be especially useful in patients with more aggressive tumors where there is not time for more protracted therapy. Cancer 2010;116(4 suppl):1084-92. (C) 2010 American Cancer Society.
  •  
2.
  •  
3.
  • Lindén, Ola, et al. (författare)
  • Radioimmunotherapy using 131I-labeled anti-CD22 monoclonal antibody (LL2) in patients with previously treated B-cell lymphomas
  • 1999
  • Ingår i: Clinical Cancer Research. - 1078-0432. ; 5:10 Suppl, s. 3287-3291
  • Tidskriftsartikel (refereegranskat)abstract
    • Experience in using rapidly internalizing antibodies, such as the anti-CD22 antibody, for radioimmunotherapy of B-cell lymphomas is still limited. The present study was conducted to assess the efficacy and toxicity of a 131I-labeled anti-CD22 monoclonal antibody (mAb), LL2, in patients with B-cell lymphomas failing first- or second-line chemotherapy. Eligible patients were required to have measurable disease, less than 25% B cells in unseparated bone marrow, and an uptake of 99mTc-labeled LL2Fab' in at least one lymphoma lesion on immunoscintigram. Eight of nine patients examined with immunoscintigraphy were unequivocally found to have an uptake, and therapy with 131I-labeled anti-CD22 [1330 MBq/m2 (36 mCi/m2)] preceded by 20 mg of naked anti-CD22 mAb was administered. Three patients achieved partial remission (duration, 12, 3, and 2 months), and one patient with progressive lymphoma showed stable disease for 17 months. Four patients exhibited progressive disease. The toxicity was hematological. Patients with subnormal counts of neutrophils or platelets before therapy seemed to be more at risk for hematological side effects. Radioimmunotherapy in patients with B-cell lymphomas using 131I-labeled mouse anti-CD22 can induce objective remission in patients with aggressive as well as indolent lymphomas who have failed prior chemotherapy.
  •  
4.
  •  
5.
  • Tran-Gia, Johannes, et al. (författare)
  • A multicentre and multi-national evaluation of the accuracy of quantitative Lu-177 SPECT/CT imaging performed within the MRTDosimetry project
  • 2021
  • Ingår i: EJNMMI Physics. - : Springer Science and Business Media LLC. - 2197-7364. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Patient-specific dosimetry is required to ensure the safety of molecular radiotherapy and to predict response. Dosimetry involves several steps, the first of which is the determination of the activity of the radiopharmaceutical taken up by an organ/lesion over time. As uncertainties propagate along each of the subsequent steps (integration of the time–activity curve, absorbed dose calculation), establishing a reliable activity quantification is essential. The MRTDosimetry project was a European initiative to bring together expertise in metrology and nuclear medicine research, with one main goal of standardizing quantitative 177Lu SPECT/CT imaging based on a calibration protocol developed and tested in a multicentre inter-comparison. This study presents the setup and results of this comparison exercise. Methods: The inter-comparison included nine SPECT/CT systems. Each site performed a set of three measurements with the same setup (system, acquisition and reconstruction): (1) Determination of an image calibration for conversion from counts to activity concentration (large cylinder phantom), (2) determination of recovery coefficients for partial volume correction (IEC NEMA PET body phantom with sphere inserts), (3) validation of the established quantitative imaging setup using a 3D printed two-organ phantom (ICRP110-based kidney and spleen). In contrast to previous efforts, traceability of the activity measurement was required for each participant, and all participants were asked to calculate uncertainties for their SPECT-based activities. Results: Similar combinations of imaging system and reconstruction lead to similar image calibration factors. The activity ratio results of the anthropomorphic phantom validation demonstrate significant harmonization of quantitative imaging performance between the sites with all sites falling within one standard deviation of the mean values for all inserts. Activity recovery was underestimated for total kidney, spleen, and kidney cortex, while it was overestimated for the medulla. Conclusion: This international comparison exercise demonstrates that harmonization of quantitative SPECT/CT is feasible when following very specific instructions of a dedicated calibration protocol, as developed within the MRTDosimetry project. While quantitative imaging performance demonstrates significant harmonization, an over- and underestimation of the activity recovery highlights the limitations of any partial volume correction in the presence of spill-in and spill-out between two adjacent volumes of interests.
  •  
6.
  • Tran-Gia, Johannes, et al. (författare)
  • On the use of solid 133Ba sources as surrogate for liquid 131I in SPECT/CT calibration : a European multi-centre evaluation
  • 2023
  • Ingår i: EJNMMI Physics. - 2197-7364. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Commissioning, calibration, and quality control procedures for nuclear medicine imaging systems are typically performed using hollow containers filled with radionuclide solutions. This leads to multiple sources of uncertainty, many of which can be overcome by using traceable, sealed, long-lived surrogate sources containing a radionuclide of comparable energies and emission probabilities. This study presents the results of a quantitative SPECT/CT imaging comparison exercise performed within the MRTDosimetry consortium to assess the feasibility of using 133Ba as a surrogate for 131I imaging. Materials and methods: Two sets of four traceable 133Ba sources were produced at two National Metrology Institutes and encapsulated in 3D-printed cylinders (volume range 1.68–107.4 mL). Corresponding hollow cylinders to be filled with liquid 131I and a mounting baseplate for repeatable positioning within a Jaszczak phantom were also produced. A quantitative SPECT/CT imaging comparison exercise was conducted between seven members of the consortium (eight SPECT/CT systems from two major vendors) based on a standardised protocol. Each site had to perform three measurements with the two sets of 133Ba sources and liquid 131I. Results: As anticipated, the 131I pseudo-image calibration factors (cps/MBq) were higher than those for 133Ba for all reconstructions and systems. A site-specific cross-calibration reduced the performance differences between both radionuclides with respect to a cross-calibration based on the ratio of emission probabilities from a median of 12–1.5%. The site-specific cross-calibration method also showed agreement between 133Ba and 131I for all cylinder volumes, which highlights the potential use of 133Ba sources to calculate recovery coefficients for partial volume correction. Conclusion: This comparison exercise demonstrated that traceable solid 133Ba sources can be used as surrogate for liquid 131I imaging. The use of solid surrogate sources could solve the radiation protection problem inherent in the preparation of phantoms with 131I liquid activity solutions as well as reduce the measurement uncertainties in the activity. This is particularly relevant for stability measurements, which have to be carried out at regular intervals.
  •  
7.
  • Brolin, Gustav, et al. (författare)
  • Dynamic (99m)Tc-MAG3 renography: images for quality control obtained by combining pharmacokinetic modelling, an anthropomorphic computer phantom and Monte Carlo simulated scintillation camera imaging.
  • 2013
  • Ingår i: Physics in Medicine and Biology. - : IOP Publishing. - 1361-6560 .- 0031-9155. ; 58:10, s. 3145-3161
  • Tidskriftsartikel (refereegranskat)abstract
    • In dynamic renal scintigraphy, the main interest is the radiopharmaceutical redistribution as a function of time. Quality control (QC) of renal procedures often relies on phantom experiments to compare image-based results with the measurement setup. A phantom with a realistic anatomy and time-varying activity distribution is therefore desirable. This work describes a pharmacokinetic (PK) compartment model for (99m)Tc-MAG3, used for defining a dynamic whole-body activity distribution within a digital phantom (XCAT) for accurate Monte Carlo (MC)-based images for QC. Each phantom structure is assigned a time-activity curve provided by the PK model, employing parameter values consistent with MAG3 pharmacokinetics. This approach ensures that the total amount of tracer in the phantom is preserved between time points, and it allows for modifications of the pharmacokinetics in a controlled fashion. By adjusting parameter values in the PK model, different clinically realistic scenarios can be mimicked, regarding, e.g., the relative renal uptake and renal transit time. Using the MC code SIMIND, a complete set of renography images including effects of photon attenuation, scattering, limited spatial resolution and noise, are simulated. The obtained image data can be used to evaluate quantitative techniques and computer software in clinical renography.
  •  
8.
  • Brolin, Gustav, et al. (författare)
  • Pharmacokinetic digital phantoms for accuracy assessment of image-based dosimetry in (177)Lu-DOTATATE peptide receptor radionuclide therapy.
  • 2015
  • Ingår i: Physics in Medicine and Biology. - : IOP Publishing. - 1361-6560 .- 0031-9155. ; 60:15, s. 6131-6149
  • Tidskriftsartikel (refereegranskat)abstract
    • Patient-specific image-based dosimetry is considered to be a useful tool to limit toxicity associated with peptide receptor radionuclide therapy (PRRT). To facilitate the establishment and reliability of absorbed-dose response relationships, it is essential to assess the accuracy of dosimetry in clinically realistic scenarios. To this end, we developed pharmacokinetic digital phantoms corresponding to patients treated with (177)Lu-DOTATATE. Three individual voxel phantoms from the XCAT population were generated and assigned a dynamic activity distribution based on a compartment model for (177)Lu-DOTATATE, designed specifically for this purpose. The compartment model was fitted to time-activity data from 10 patients, primarily acquired using quantitative scintillation camera imaging. S values for all phantom source-target combinations were calculated based on Monte-Carlo simulations. Combining the S values and time-activity curves, reference values of the absorbed dose to the phantom kidneys, liver, spleen, tumours and whole-body were calculated. The phantoms were used in a virtual dosimetry study, using Monte-Carlo simulated gamma-camera images and conventional methods for absorbed-dose calculations. The characteristics of the SPECT and WB planar images were found to well represent those of real patient images, capturing the difficulties present in image-based dosimetry. The phantoms are expected to be useful for further studies and optimisation of clinical dosimetry in (177)Lu PRRT.
  •  
9.
  • Floreby, L, et al. (författare)
  • Deformable Fourier surfaces for volume segmentation in SPECT
  • 1998
  • Ingår i: Proceeedings of the Fourteenth International Conference on Pattern Recognition. - 1051-4651. - 0818685123 ; 1, s. 358-360
  • Konferensbidrag (refereegranskat)abstract
    • Three-dimensional boundary finding based on Fourier surface optimization is presented as a method for segmentation of SPECT images. Being robust against noise and adjustable with respect to its detail resolution, it forms an interesting alternative in this application area. A three-dimensional approach can also be assumed to increase the possibility of delineating low contrast regions, as compared to a two-dimensional slice-by-slice approach. We apply boundary finding to Monte Carlo simulated SPECT images of the computer-based anthropomorphic Zubal phantom in order to evaluate the influence of object contrast and noise on the segmentation accuracy. Segmentation is also performed in real patient images
  •  
10.
  • Gustafsson, Johan, et al. (författare)
  • Averaging of absorbed doses : How matter matters
  • 2023
  • Ingår i: Medical Physics. - : WILEY. - 0094-2405. ; 50:10, s. 6600-6613
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Dosimetry in radionuclide therapy often requires the calculation of average absorbed doses within and between spatial regions, for example, for voxel-based dosimetry methods, for paired organs, or across multiple tumors. Formation of such averages can be made in different ways, starting from different definitions. Purpose: The aim of this study is to formally specify different averaging strategies for absorbed doses, and to compare their results when applied to absorbed dose distributions that are non-uniform within and between regions. Methods: For averaging within regions, two definitions of the average absorbed dose are considered: the simple average over the region (the region average) and the average when weighting by the mass density (density-weighted region average). The latter is shown to follow from the definition of mean absorbed dose according to the ICRU, and to be consistent with the MIRD formalism. For averaging between different spatial regions, three definitions follow: the volume-weighted, the mass-weighted, and the unweighted average. With respect to characterizing non-uniformity, the different average definitions lead to the use of dose-volume histograms (DVHs) (region average), dose-mass histograms (DMHs) (density-weighted region average), and unweighted histograms (unweighted average). Average absorbed doses are calculated for three worked examples, starting from the different definitions. The first, schematic, example concerns the calculation of the average absorbed dose between two regions with different volumes or mass densities. The second, stylized, example concerns voxel-based dosimetry, for which the average absorbed-dose rate within a region is calculated. The geometries studied include three 177Lu-filled voxelized spheres, where the sphere masses are held constant while the material compositions, densities, and volumes are varied. For comparison, the mean absorbed-dose rates obtained using unit-density sphere S-values are also included. The third example concerns SPECT/CT-based tumor dosimetry for five patients undergoing therapy with 177Lu-PSMA and six patients undergoing therapy with 177Lu-DOTA-TATE, for which the average absorbed-dose rates across multiple tumors are calculated. For the second and third examples, analyses also include representations by histograms. Results: Example 1 shows that the average absorbed doses, calculated using different definitions, can differ considerably if the masses and absorbed doses for two regions are markedly different. From example 2 it is seen that the density-weighted region average is stable under different activity and density distributions and is also in line with results using S-values. In contrast, the region average varies as function of the activity distribution. In example 3, the absorbed dose rates for individual tumors differ by (1.1 ± 4.3)% and (−0.1 ± 0.4)% with maximum deviations of +34.4% and −1.4% for 177Lu-PSMA and 177Lu-DOTA-TATE, respectively, when calculated as region averages or density-weighted region averages, with largest deviations obtained when the density is non-uniform. The average absorbed doses calculated across all tumors are similar when comparing mass-weighted and volume-weighted averages but these differ substantially from unweighted averages. Conclusion: Different strategies for averaging of absorbed doses within and between regions can lead to substantially different absorbed-dose estimates. At reporting of radionuclide therapy dosimetry, it is important to specify the averaging strategy applied.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 39
Typ av publikation
tidskriftsartikel (30)
bokkapitel (4)
konferensbidrag (3)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (38)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Ljungberg, Michael (39)
Strand, Sven-Erik (12)
Tennvall, Jan (8)
Minarik, David (5)
Wingårdh, Karin (5)
visa fler...
Larsson, Erik (4)
Lindén, Ola (4)
Gustafsson, Johan (4)
Brolin, Gustav (4)
Garkavij, Michael (4)
Bernhardt, Peter, 19 ... (3)
Ohlsson, Tomas G (3)
Sundlöv, Anna (3)
Svensson, J (2)
Warfvinge, Carl Fred ... (2)
Lassmann, Michael (2)
Gustafsson, Johan Ru ... (2)
Erlandsson, Kjell (2)
Gleisner, Katarina S ... (2)
Nickel, Mattias (2)
Tran-Gia, Johannes (2)
Roth, Daniel (2)
Grassi, Elisa (2)
Strand, Joanna (1)
Alm Carlsson, Gudrun (1)
Hallqvist, Andreas, ... (1)
Sörnmo, Leif (1)
Svensson, Johanna (1)
Eckerman, Keith F (1)
Frey, E (1)
Cavallin-Ståhl, Eva (1)
Duncan, J. S. (1)
Lindner, K J (1)
Johansson, Lena (1)
Olsson, Tomas G. (1)
Frey, Eric (1)
Liu, Xiaowei (1)
Chiesa, C. (1)
Konijnenberg, Mark W (1)
Curkic Kapidzic, Sel ... (1)
Jessen, Lovisa (1)
Darte, Lennart (1)
Dewaraja, Y K (1)
Dewaraja, Yuni K. (1)
Nilsson, Rune (1)
Floreby, L (1)
Floreby, Lars (1)
Asp, Pernilla (1)
Cox, Maurice (1)
visa färre...
Lärosäte
Lunds universitet (39)
Göteborgs universitet (3)
Linköpings universitet (1)
Språk
Engelska (39)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (39)
Naturvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy