SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ljunggren Elin) ;lar1:(lu)"

Sökning: WFRF:(Ljunggren Elin) > Lunds universitet

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eriksson, Anna-Lena, 1971, et al. (författare)
  • The COMT val158met polymorphism is associated with prevalent fractures in Swedish men.
  • 2008
  • Ingår i: Bone. - : Elsevier BV. - 8756-3282 .- 1873-2763. ; 42:1, s. 107-12
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Sex steroids are important for growth and maintenance of the skeleton. Catechol-O-methyltransferase (COMT) is an estrogen degrading enzyme. The COMT val158met polymorphism results in a 60-75% difference in enzyme activity between the val (high activity=H) and met (low activity=L) variants. We have previously reported that this polymorphism is associated with bone mineral density (BMD) in young men. The aim of this study was to investigate associations between COMT val158met, BMD and fractures in elderly men. METHODS: Population-based study of Swedish men 75.4, SD 3.2, years of age. Fractures were reported using standardized questionnaires. Fracture and genotype data were available from 2,822 individuals. RESULTS: Total number of individuals with self-reported fracture was 989 (35.0%). Prevalence of >or=1 fracture was 37.2% in COMT(LL), 35.7% in COMT(HL) and 30.4% in COMT(HH) (p<0.05). Early fractures (50 years of age). The OR for fracture of the non-weight bearing skeleton in COMT(HH) compared with COMT(LL+HL) was 0.74 (95% CI 0.59-0.92). No associations between COMT val158met and BMD were found in this cohort of elderly men. CONCLUSIONS: The COMT val158met polymorphism is associated with life time fracture prevalence in elderly Swedish men. This association is mainly driven by early fractures (
  •  
2.
  • Estrada, Karol, et al. (författare)
  • Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture.
  • 2012
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 44:5, s. 491-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10(-8)). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10(-4), Bonferroni corrected), of which six reached P < 5 × 10(-8), including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.
  •  
3.
  • Grundberg, Elin, et al. (författare)
  • Population genomics in a disease targeted primary cell model
  • 2009
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 19:11, s. 1942-1952
  • Tidskriftsartikel (refereegranskat)abstract
    • The common genetic variants associated with complex traits typically lie in noncoding DNA and may alter gene regulation in a cell type-specific manner. Consequently, the choice of tissue or cell model in the dissection of disease associations is important. We carried out an expression quantitative trait loci (eQTL) study of primary human osteoblasts (HOb) derived from 95 unrelated donors of Swedish origin, each represented by two independently derived primary lines to provide biological replication. We combined our data with publicly available information from a genome-wide association study (GWAS) of bone mineral density (BMD). The top 2000 BMD-associated SNPs (P < approximately 10(-3)) were tested for cis-association of gene expression in HObs and in lymphoblastoid cell lines (LCLs) using publicly available data and showed that HObs have a significantly greater enrichment (threefold) of converging cis-eQTLs as compared to LCLs. The top 10 BMD loci with SNPs showing strong cis-effects on gene expression in HObs (P = 6 x 10(-10) - 7 x 10(-16)) were selected for further validation using a staged design in two cohorts of Caucasian male subjects. All 10 variants were tested in the Swedish MrOS Cohort (n = 3014), providing evidence for two novel BMD loci (SRR and MSH3). These variants were then tested in the Rotterdam Study (n = 2090), yielding converging evidence for BMD association at the 17p13.3 SRR locus (P(combined) = 5.6 x 10(-5)). The cis-regulatory effect was further fine-mapped to the proximal promoter of the SRR gene (rs3744270, r(2) = 0.5, P = 2.6 x 10(-15)). Our results suggest that primary cells relevant to disease phenotypes complement traditional approaches for prioritization and validation of GWAS hits for follow-up studies.
  •  
4.
  • Grundberg, Elin, et al. (författare)
  • The Impact of Estradiol on Bone Mineral Density is modulated by The Specific Estrogen Receptor-{alpha} Cofactor RIZ1 Insertion/Deletion Polymorphism.
  • 2007
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 92:Mar 13, s. 2300-2306
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Estrogens regulate bone mass by binding to the estrogen receptor (ER)-alpha as well as ER-beta. The specific ER -cofactor retinoblastoma-interacting zinc finger protein (RIZ)-1 enhances ER alpha function in the presence of estrogen. Objective: The objective of the study was to determine whether a RIZ P704 insertion (+)/ deletion (-) (indel) polymorphism modulates the impact of estradiol on bone mineral density (BMD) and study the association between the polymorphism and BMD in elderly subjects. Design: This was a population-based, prospective, and cross-sectional study, the Swedish MrOS Study, and the Malmo OPRA Study, respectively. Setting: The study was conducted at three academic medical centers: Sahlgrenska Academy in Gothenburg, Malmo University Hospital, and Uppsala University Hospital. Participants: In total, 4058 men and women, aged 69 -81 yr, were randomly selected from population registries. Main Outcome Measures: BMD(grams per square centimeter) was measured at femoral neck, trochanter, lumbar spine, and total body. Results: The RIZ P704(+/+) genotype was associated with low BMD in both women (femoral neck, P < 0.001; trochanter, P < 0.01; lumbar spine, P < 0.05; total body, P < 0.01) and men (lumbar spine, P < 0.05). However, the association between the polymorphism and BMD was dependent on estradiol status. The positive correlation between serum estradiol and BMD was significantly modulated by the genotype with a stronger correlation in the P704(+/+) group than the P704(+/+) group (r = 0.19 vs. r = 0.08, P < 0.05). Conclusions: These large-scale studies of elderly men and women indicate that the ER alpha cofactor RIZ gene has a prominent effect on BMD, and the P704 genotype modulates the impact of estradiol on BMD. Further studies are required to determine whether this polymorphism modulates the estrogenic response to estradiol treatment.
  •  
5.
  • Grundberg, Elin, et al. (författare)
  • Vitamin D receptor 3 ' haplotypes are unequally expressed in primary human bone cells and associated with increased fracture risk: The MrOS study in Sweden and Hong kong
  • 2007
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 1523-4681 .- 0884-0431. ; 22:6, s. 832-840
  • Tidskriftsartikel (refereegranskat)abstract
    • The VDR is a prime candidate gene for osteoporosis. Here, we studied three common VDR haplotypes in relation to bone phenotypes in 5014 participants of the global MrOS Study. We also studied the relative expression of the haplotypes in human bone cells. One haplotype was associated with increased fracture risk and differently expressed in primary human bone cells. Introduction: Vitamin D plays an essential role in skeletal metabolism by binding to its nuclear steroid receptor, the vitamin D receptor (VDR). The heritability of BMD is well established, and the VDR gene is considered a prime candidate suggested to partially account for genetically controlled BMD variance in the population. Materials and Methods: Here, we reconstructed common haplotypes in the VDR 3 ' untranslated region (UTR) and studied the association to BMD and risk of vertebral fractures in elderly men from Sweden (n = 3014) and Hong Kong (n = 2000), all participants of the global MrOS Study. To assess any functional implications of the VDR polymorphisms, we studied allele-specific expressions of the different VDR 3 ' UTR haplotypes in the normal chromosomal context of 70 unrelated human trabecular bone samples. This was performed by quantitative genotyping of coding polymorphisms in RNA samples and in corresponding DNA samples isolated from the bone samples. Results: Three major haplotypes were reconstructed and in agreement with the previously well-defined baT, BAt, and bAT haplotypes, herein denoted Hap1, Hap2, and Hap3. The Hap1 haplotype was independently associated with increased risk of vertebral fractures in Swedish men (OR, 1.655; 95% Cl, 1.146-2.391;p < 0.01) and with lower lumbar spine BMD in elderly men from Sweden (p < 0.01) and Hong Kong (P < 0.05). The VDR gene was also shown to exhibit a 3 ' UTR haplotype dependent allelic imbalance, indicating that the VDR Hap1 allele was overexpressed in human trabecular bone samples. Conclusions: The results indicate that the relatively overexpressed VDR Hap1 haplotype could be considered a risk allele for osteoporosis regardless of ethnicity.
  •  
6.
  • Henningsson, Susanne, 1977, et al. (författare)
  • Possible association between the androgen receptor gene and autism spectrum disorder.
  • 2009
  • Ingår i: Psychoneuroendocrinology. - : Elsevier BV. - 0306-4530 .- 1873-3360. ; 34:5, s. 752-761
  • Tidskriftsartikel (refereegranskat)abstract
    • Autism is a highly heritable disorder but the specific genes involved remain largely unknown. The higher prevalence of autism in men than in women, in conjunction with a number of other observations, has led to the suggestion that prenatal brain exposure to androgens may be of importance for the development of this condition. Prompted by this hypothesis, we investigated the potential influence of variation in the androgen receptor (AR) gene on the susceptibility for autism. To this end, 267 subjects with autism spectrum disorder and 617 controls were genotyped for three polymorphisms in exon 1 of the AR gene: the CAG repeat, the GGN repeat and the rs6152 SNP. In addition, parents and affected siblings were genotyped for 118 and 32 of the cases, respectively. Case-control comparisons revealed higher prevalence of short CAG alleles as well as of the A allele of the rs6152 SNP in female cases than in controls, but revealed no significant differences with respect to the GGN repeat. Analysis of the 118 families using transmission disequilibrium test, on the other hand, suggested an association with the GGN polymorphism, the rare 20-repeat allele being undertransmitted to male cases and the 23-repeat allele being overtransmitted to female cases. Sequencing of the AR gene in 46 patients revealed no mutations or rare variants. The results lend some support for an influence of the studied polymorphisms on the susceptibility for autism, but argue against the possibility that mutations in the AR gene are common in subjects with this condition.
  •  
7.
  • Kwan, Tony, et al. (författare)
  • Tissue effect on genetic control of transcript isoform variation.
  • 2009
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 5:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Current genome-wide association studies (GWAS) are moving towards the use of large cohorts of primary cell lines to study a disease of interest and to assign biological relevance to the genetic signals identified. Here, we use a panel of human osteoblasts (HObs) to carry out a transcriptomic survey, similar to recent studies in lymphoblastoid cell lines (LCLs). The distinct nature of HObs and LCLs is reflected by the preferential grouping of cell type-specific genes within biologically and functionally relevant pathways unique to each tissue type. We performed cis-association analysis with SNP genotypes to identify genetic variations of transcript isoforms, and our analysis indicates that differential expression of transcript isoforms in HObs is also partly controlled by cis-regulatory genetic variants. These isoforms are regulated by genetic variants in both a tissue-specific and tissue-independent fashion, and these associations have been confirmed by RT-PCR validation. Our study suggests that multiple transcript isoforms are often present in both tissues and that genetic control may affect the relative expression of one isoform to another, rather than having an all-or-none effect. Examination of the top SNPs from a GWAS of bone mineral density show overlap with probeset associations observed in this study. The top hit corresponding to the FAM118A gene was tested for association studies in two additional clinical studies, revealing a novel transcript isoform variant. Our approach to examining transcriptome variation in multiple tissue types is useful for detecting the proportion of genetic variation common to different cell types and for the identification of cell-specific isoform variants that may be functionally relevant, an important follow-up step for GWAS.
  •  
8.
  • Liu, Ching-Ti, et al. (författare)
  • Assessment of gene-by-sex interaction effect on bone mineral density
  • 2012
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 1523-4681 .- 0884-0431. ; 27:10, s. 2051-2064
  • Tidskriftsartikel (refereegranskat)abstract
    • Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however, the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome-wide, and performed expression quantitative trait loci (eQTL) analysis and bioinformatics network analysis. We conducted an autosomal genome-wide meta-analysis of gene-by-sex interaction on lumbar spine (LS) and femoral neck (FN) BMD in 25,353 individuals from 8 cohorts. In a second stage, we followed up the 12 top single-nucleotide polymorphisms (SNPs; p?
  •  
9.
  • Marsell, Richard, et al. (författare)
  • Fibroblast growth factor-23 is associated with parathyroid hormone and renal function in a population-based cohort of elderly men.
  • 2008
  • Ingår i: European journal of endocrinology / European Federation of Endocrine Societies. - 1479-683X .- 0804-4643. ; 158:1, s. 125-9
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Fibroblast growth factor-23 (FGF23) is a circulating factor involved in phosphate (Pi) and vitamin D metabolism. Serum FGF23 is increased at later stages of chronic kidney disease due to chronic hyperphosphatemia and decreased renal clearance. Recent studies also indicate that FGF23 may directly regulate the expression of parathyroid hormone (PTH) in vitro. Therefore, the objective of the current study was to determine the relationship between FGF23, PTH, and other biochemistries in vivo in subjects with no history of renal disease. DESIGN: Serum biochemistries were measured in a subsample of the population-based Swedish part of the MrOS study. In total, 1000 Caucasian men aged 70-80 years were randomly selected from the population. METHODS: Intact FGF23, Pi, calcium, albumin, estimated glomerular filtration rate (eGFR, calculated from cystatin C), PTH, and 25(OH)D3 were measured. Association studies were performed using linear univariate and multivariate regression analyses. RESULTS: The median FGF23 level was 36.6 pg/ml, ranging from 0.63 to 957 pg/ml. There was a significant correlation between log FGF23 and eGFR (r=-0.21; P<0.00001) and log PTH (r=0.13; P<0.001). These variables remained as independent predictors of FGF23 in multivariate analysis. In addition, log PTH (beta=0.082; P<0.05) and eGFR (beta=-0.090; P<0.05) were associated with log FGF23 in subjects with eGFR>60 ml/min. Only eGFR (beta=-0.35; P<0.0001) remained as a predictor of log FGF23 in subjects with eGFR<60 ml/min. CONCLUSIONS: Serum FGF23 and PTH are associated in vivo, supporting recent findings that FGF23 directly regulates PTH expression in vitro. Additionally, eGFR is associated with FGF23 in subjects with normal or mildly impaired renal function, indicating that GFR may modulate FGF23 levels independent of serum Pi.
  •  
10.
  • Paternoster, Lavinia, et al. (författare)
  • Genetic determinants of trabecular and cortical volumetric bone mineral densities and bone microstructure.
  • 2013
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Most previous genetic epidemiology studies within the field of osteoporosis have focused on the genetics of the complex trait areal bone mineral density (aBMD), not being able to differentiate genetic determinants of cortical volumetric BMD (vBMD), trabecular vBMD, and bone microstructural traits. The objective of this study was to separately identify genetic determinants of these bone traits as analysed by peripheral quantitative computed tomography (pQCT). Separate GWA meta-analyses for cortical and trabecular vBMDs were performed. The cortical vBMD GWA meta-analysis (n = 5,878) followed by replication (n = 1,052) identified genetic variants in four separate loci reaching genome-wide significance (RANKL, rs1021188, p = 3.6×10⁻¹⁴; LOC285735, rs271170, p = 2.7×10⁻¹²; OPG, rs7839059, p = 1.2×10⁻¹⁰; and ESR1/C6orf97, rs6909279, p = 1.1×10⁻⁹). The trabecular vBMD GWA meta-analysis (n = 2,500) followed by replication (n = 1,022) identified one locus reaching genome-wide significance (FMN2/GREM2, rs9287237, p = 1.9×10⁻⁹). High-resolution pQCT analyses, giving information about bone microstructure, were available in a subset of the GOOD cohort (n = 729). rs1021188 was significantly associated with cortical porosity while rs9287237 was significantly associated with trabecular bone fraction. The genetic variant in the FMN2/GREM2 locus was associated with fracture risk in the MrOS Sweden cohort (HR per extra T allele 0.75, 95% confidence interval 0.60-0.93) and GREM2 expression in human osteoblasts. In conclusion, five genetic loci associated with trabecular or cortical vBMD were identified. Two of these (FMN2/GREM2 and LOC285735) are novel bone-related loci, while the other three have previously been reported to be associated with aBMD. The genetic variants associated with cortical and trabecular bone parameters differed, underscoring the complexity of the genetics of bone parameters. We propose that a genetic variant in the RANKL locus influences cortical vBMD, at least partly, via effects on cortical porosity, and that a genetic variant in the FMN2/GREM2 locus influences GREM2 expression in osteoblasts and thereby trabecular number and thickness as well as fracture risk.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy