SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lléo A) ;pers:(Scheltens P)"

Sökning: WFRF:(Lléo A) > Scheltens P

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Rojas, I., et al. (författare)
  • Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease. © 2021, The Author(s).
  •  
2.
  •  
3.
  • Bellenguez, C, et al. (författare)
  • New insights into the genetic etiology of Alzheimer's disease and related dementias
  • 2022
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 54:4, s. 412-436
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.
  •  
4.
  •  
5.
  • van der Lee, S. J., et al. (författare)
  • A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity
  • 2019
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 138:2, s. 237-250
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic variant rs72824905-G (minor allele) in the PLCG2 gene was previously associated with a reduced Alzheimer's disease risk (AD). The role of PLCG2 in immune system signaling suggests it may also protect against other neurodegenerative diseases and possibly associates with longevity. We studied the effect of the rs72824905-G on seven neurodegenerative diseases and longevity, using 53,627 patients, 3,516 long-lived individuals and 149,290 study-matched controls. We replicated the association of rs72824905-G with reduced AD risk and we found an association with reduced risk of dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD). We did not find evidence for an effect on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) risks, despite adequate sample sizes. Conversely, the rs72824905-G allele was associated with increased likelihood of longevity. By-proxy analyses in the UK Biobank supported the associations with both dementia and longevity. Concluding, rs72824905-G has a protective effect against multiple neurodegenerative diseases indicating shared aspects of disease etiology. Our findings merit studying the PLC gamma 2 pathway as drug-target.
  •  
6.
  •  
7.
  •  
8.
  • Bonham, LW, et al. (författare)
  • Genetic variation across RNA metabolism and cell death gene networks is implicated in the semantic variant of primary progressive aphasia
  • 2019
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 10854-
  • Tidskriftsartikel (refereegranskat)abstract
    • The semantic variant of primary progressive aphasia (svPPA) is a clinical syndrome characterized by neurodegeneration and progressive loss of semantic knowledge. Unlike many other forms of frontotemporal lobar degeneration (FTLD), svPPA has a highly consistent underlying pathology composed of TDP-43 (a regulator of RNA and DNA transcription metabolism). Previous genetic studies of svPPA are limited by small sample sizes and a paucity of common risk variants. Despite this, svPPA’s relatively homogenous clinicopathologic phenotype makes it an ideal investigative model to examine genetic processes that may drive neurodegenerative disease. In this study, we used GWAS metadata, tissue samples from pathologically confirmed frontotemporal lobar degeneration, and in silico techniques to identify and characterize protein interaction networks associated with svPPA risk. We identified 64 svPPA risk genes that interact at the protein level. The protein pathways represented in this svPPA gene network are critical regulators of RNA metabolism and cell death, such as SMAD proteins and NOTCH1. Many of the genes in this network are involved in TDP-43 metabolism. Contrary to the conventional notion that svPPA is a clinical syndrome with few genetic risk factors, our analyses show that svPPA risk is complex and polygenic in nature. Risk for svPPA is likely driven by multiple common variants in genes interacting with TDP-43, along with cell death,x` working in combination to promote neurodegeneration.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy