Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Long Jirong) "

Sökning: WFRF:(Long Jirong)

  • Resultat 1-10 av 25
  • [1]23Nästa
Sortera/gruppera träfflistan
  • Lu, Yingchang, et al. (författare)
  • Identification of Novel Loci and New Risk Variant in Known Loci for Colorectal Cancer Risk in East Asians
  • 2020
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 29:2, s. 477-486
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Risk variants identified so far for colorectal cancer explain only a small proportion of milial risk of this cancer, particularly in Asians.Methods: We performed a genome-wide association study (GWAS) of colorectal cancer in East Asians, cluding 23,572 colorectal cancer cases and 48,700 controls. To identify novel risk loci, we selected 60 omising risk variants for replication using data from 58,131 colorectal cancer cases and 67,347 controls European descent. To identify additional risk variants in known colorectal cancer loci, we performed nditional analyses in East Asians.Results: An indel variant, rs67052019 at 1p13.3, was found to be associated with colorectal cancer risk P = 3.9 x 10(-8) in Asians (OR per allele deletion = 1.13, 95% confidence interval = 1.08-1.18). This sociation was replicated in European descendants using a variant (rs2938616) in complete linkage sequilibrium with rs67052019 (P = 7.7 x 10(-3)). Of the remaining 59 variants, 12 showed an association P < 0.05 in the European-ancestry study, including rs11108175 and rs9634162 at P < 5 x 10(-8) and o variants with an association near the genome-wide significance level (rs60911071, P = 5.8 x 10(-8); 62558833, P = 7.5 x 10(-8)) in the combined analyses of Asian- and European-ancestry data. In addition, ing data from East Asians, we identified 13 new risk variants at 11 loci reported from previous GWAS.Conclusions: In this large GWAS, we identified three novel risk loci and two highly suggestive loci for lorectal cancer risk and provided evidence for potential roles of multiple genes and pathways in the iology of colorectal cancer. In addition, we showed that additional risk variants exist in many colorectal ncer risk loci identified previously.Impact: Our study provides novel data to improve the understanding of the genetic basis for colorectal ncer risk.
  • Couch, Fergus J., et al. (författare)
  • Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer
  • 2016
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723 .- 2041-1723. ; 7:11375, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 x 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for similar to 11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.
  • Dunning, Alison M, et al. (författare)
  • Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170.
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036.
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.
  • Dörk, Thilo, et al. (författare)
  • Two truncating variants in FANCC and breast cancer risk
  • 2019
  • Ingår i: ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95% CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.
  • Hollestelle, Antoinette, et al. (författare)
  • No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer
  • Ingår i: Gynecologic Oncology. - : Academic Press. - 0090-8258 .- 1095-6859. ; 141:2, s. 386-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3′ UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. Methods Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). Results We found no association with risk of ovarian cancer (OR = 0.99, 95% CI 0.94-1.04, p = 0.74) or breast cancer (OR = 0.98, 95% CI 0.94-1.01, p = 0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR = 1.09, 95% CI 0.97-1.23, p = 0.14, breast cancer HR = 1.04, 95% CI 0.97-1.12, p = 0.27; BRCA2, ovarian cancer HR = 0.89, 95% CI 0.71-1.13, p = 0.34, breast cancer HR = 1.06, 95% CI 0.94-1.19, p = 0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR = 0.94, 95% CI 0.83-1.07, p = 0.38), breast cancer (HR = 0.96, 95% CI 0.87-1.06, p = 0.38), and all other previously-reported associations. Conclusions rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers.
  • Tidskriftsartikel (refereegranskat)
  • Lu, Yingchang, et al. (författare)
  • A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk.
  • 2018
  • Ingår i: ; 78:18, s. 5419-5430
  • Tidskriftsartikel (refereegranskat)abstract
    • .AbstractLarge-scale genome-wide association studies (GWAS) have identified approximately 35 loci associated with epithelial ovarian cancer (EOC) risk. The majority of GWAS-identified disease susceptibility variants are located in noncoding regions, and causal genes underlying these associations remain largely unknown. Here, we performed a transcriptome-wide association study to search for novel genetic loci and plausible causal genes at known GWAS loci. We used RNA sequencing data (68 normal ovarian tissue samples from 68 individuals and 6,124 cross-tissue samples from 369 individuals) and high-density genotyping data from European descendants of the Genotype-Tissue Expression (GTEx V6) project to build ovarian and cross-tissue models of genetically regulated expression using elastic net methods. We evaluated 17,121 genes for their cis-predicted gene expression in relation to EOC risk using summary statistics data from GWAS of 97,898 women, including 29,396 EOC cases. With a Bonferroni-corrected significance level of P < 2.2 × 10−6, we identified 35 genes, including FZD4 at 11q14.2 (Z = 5.08, P = 3.83 × 10−7, the cross-tissue model; 1 Mb away from any GWAS-identified EOC risk variant), a potential novel locus for EOC risk. All other 34 significantly associated genes were located within 1 Mb of known GWAS-identified loci, including 23 genes at 6 loci not previously linked to EOC risk. Upon conditioning on nearby known EOC GWAS-identified variants, the associations for 31 genes disappeared and three genes remained (P < 1.47 × 10−3). These data identify one novel locus (FZD4) and 34 genes at 13 known EOC risk loci associated with EOC risk, providing new insights into EOC carcinogenesis.Significance: Transcriptomic analysis of a large cohort confirms earlier GWAS loci and reveals FZD4 as a novel locus associated with EOC risk. Cancer Res; 78(18); 5419–30. ©2018 AACR.
  • Mahajan, Anubha, et al. (författare)
  • Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility
  • 2014
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 46:3, s. 234-234
  • Tidskriftsartikel (refereegranskat)abstract
    • To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci. Furthermore, we observed considerable improvements in the fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry.
  • Meyer, Kerstin B., et al. (författare)
  • Fine-Scale Mapping of the FGFR2 Breast Cancer Risk Locus: Putative Functional Variants Differentially Bind FOXA1 and E2F1
  • 2013
  • Ingår i: American Journal of Human Genetics. - : Cell Press. - 0002-9297 .- 1537-6605. ; 93:6, s. 1046-1060
  • Tidskriftsartikel (refereegranskat)abstract
    • The 10q26 locus in the second intron of FGFR2 is the locus most strongly associated with estrogen-receptor-positive breast cancer in genome-wide association studies. We conducted fine-scale mapping in case-control studies genotyped with a custom chip (iCOGS), comprising 41 studies (n = 89,050) of European ancestry, 9 Asian ancestry studies (n = 13,983), and 2 African ancestry studies (n = 2,028) from the Breast Cancer Association Consortium. We identified three statistically independent risk signals within the locus. Within risk signals 1 and 3, genetic analysis identified five and two variants, respectively, highly correlated with the most strongly associated SNPs. By using a combination of genetic fine mapping, data on DNase hypersensitivity, and electrophoretic mobility shift assays to study protein-DNA binding, we identified rs35054928, rs2981578, and rs45631563 as putative functional SNPs. Chromatin immunoprecipitation showed that FOXA1 preferentially bound to the risk-associated allele (C) of rs2981578 and was able to recruit ER alpha to this site in an allele-specific manner, whereas E2F1 preferentially bound the risk variant of rs35054928. The risk alleles were preferentially found in open chromatin and bound by Ser5 phosphorylated RNA polymerase II, suggesting that the risk alleles are associated with changes in transcription. Chromatin conformation capture demonstrated that the risk region was able to interact with the promoter of FGFR2, the likely target gene of this risk region. A role for FOXA1 in mediating breast cancer susceptibility at this locus is consistent with the finding that the FGFR2 risk locus primarily predisposes to estrogen-receptor-positive disease.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25
  • [1]23Nästa
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy