SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lorentzon M) "

Sökning: WFRF:(Lorentzon M)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Graff, M., et al. (författare)
  • Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults
  • 2017
  • Ingår i: PLoS Genet. - : Public library service. - 1553-7404 .- 1553-7390. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by similar to 30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.
  •  
4.
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  • Shungin, Dmitry, et al. (författare)
  • New genetic loci link adipose and insulin biology to body fat distribution.
  • 2015
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 518:7538, s. 187-378
  • Tidskriftsartikel (refereegranskat)abstract
    • Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
  •  
6.
  • Ried, Janina S, et al. (författare)
  • A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape.
  • 2016
  • Ingår i: Nature communications. - : Nature Publishing Group. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.
  •  
7.
  • Speliotes, Elizabeth K., et al. (författare)
  • Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
  • 2010
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 42:11, s. 53-937
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and similar to 2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 x 10(-8)), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
  •  
8.
  • Wood, Andrew R, et al. (författare)
  • Defining the role of common variation in the genomic and biological architecture of adult human height.
  • 2014
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 46:11, s. 1173-1186
  • Tidskriftsartikel (refereegranskat)abstract
    • Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
  •  
9.
  • Zillikens, M. C., et al. (författare)
  • Large meta-analysis of genome-wide association studies identifies five loci for lean body mass
  • 2017
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 x 10(-8)) or suggestively genome wide (p < 2.3 x 10(-6)). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/ near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/ near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass.
  •  
10.
  • Lango Allen, Hana, et al. (författare)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • Ingår i: Nature. - : Nature Publishing Group. - 1476-4687 .- 0028-0836. ; 467:7317, s. 832-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
Skapa referenser, mejla, bekava och länka
Typ av publikation
tidskriftsartikel (148)
konferensbidrag (14)
rapport (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (140)
övrigt vetenskapligt (24)
Författare/redaktör
Lorentzon, Mattias, ... (97)
Lorentzon, M. (94)
Ohlsson, Claes, 1965 (73)
Ohlsson, C (64)
Mellström, Dan, 1945 (59)
Uitterlinden, Andre ... (46)
visa fler...
Karlsson, Magnus (45)
Vandenput, Liesbeth, ... (39)
Harris, Tamara B (37)
Mellstrom, D. (36)
Rivadeneira, Fernand ... (36)
Van Duijn, Cornelia ... (34)
Wareham, Nicholas J (34)
Wilson, James F. (34)
Ljunggren, Östen (33)
Ljunggren, O. (32)
Loos, Ruth J F (32)
Zillikens, M. Carola (32)
Feitosa, Mary F. (31)
Karlsson, M (30)
Hofman, Albert (30)
Borecki, Ingrid B. (30)
Karlsson, Magnus K. (29)
Eriksson, Joel (29)
Karlsson, M. K. (28)
McCarthy, Mark I (28)
Ridker, Paul M. (27)
Chasman, Daniel I. (27)
Cupples, L. Adrienne (27)
Johansson, H (26)
Psaty, Bruce M. (26)
Kiel, Douglas P. (26)
Lindgren, Cecilia M. (26)
Vandenput, L (25)
Strachan, David P (24)
Campbell, H (24)
Rivadeneira, F (24)
Hayward, C. (24)
O'Connell, Jeffrey R (24)
Hirschhorn, Joel N. (24)
Kleber, Marcus E. (24)
Luan, Jian'an (24)
Boomsma, Dorret I. (23)
Rose, Lynda M (23)
Mohlke, Karen L (23)
Oostra, Ben A. (23)
Eriksson, Johan G. (23)
Kutalik, Z (23)
Kutalik, Zoltan (23)
Jackson, Anne U. (23)
visa färre...
Lärosäte
Göteborgs universitet (107)
Lunds universitet (60)
Uppsala universitet (30)
Karolinska Institutet (24)
Umeå universitet (23)
Luleå tekniska universitet (5)
visa fler...
Chalmers tekniska högskola (4)
Högskolan i Skövde (2)
Högskolan i Gävle (2)
Stockholms universitet (1)
Örebro universitet (1)
Linköpings universitet (1)
Jönköping University (1)
Högskolan i Halmstad (1)
RISE (1)
visa färre...
Språk
Engelska (164)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (120)
Naturvetenskap (7)
Teknik (5)
Lantbruksvetenskap (1)
Humaniora (1)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy