SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lowe Craig B.) "

Sökning: WFRF:(Lowe Craig B.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lee, S. Hong, et al. (författare)
  • Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs
  • 2013
  • Ingår i: Nature genetics. - 1546-1718. ; 45:9, s. 984-
  • Tidskriftsartikel (refereegranskat)abstract
    • Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major depressive disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn's disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders. © 2013 Nature America, Inc. All rights reserved.
  •  
2.
  • O'Dushlaine, C, et al. (författare)
  • Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways
  • 2015
  • Ingår i: Nature neuroscience. - 1546-1726. ; 18:2, s. 199-209
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from over 60,000 participants from the Psychiatric Genomics Consortium. We developed an analysis framework to rank pathways that requires only summary statistics. We combined this score across disorders to find common pathways across three adult psychiatric disorders: schizophrenia, major depression and bipolar disorder. Histone methylation processes showed the strongest association, and we also found statistically significant evidence for associations with multiple immune and neuronal signaling pathways and with the postsynaptic density. Our study indicates that risk variants for psychiatric disorders aggregate in particular biological pathways and that these pathways are frequently shared between disorders. Our results confirm known mechanisms and suggest several novel insights into the etiology of psychiatric disorders.
  •  
3.
  • van der Valk, Ralf J P, et al. (författare)
  • A novel common variant in DCST2 is associated with length in early life and height in adulthood.
  • 2015
  • Ingår i: Human molecular genetics. - 1460-2083. ; 24:4, s. 1155-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Common genetic variants have been identified for adult height, but not much is known about the genetics of skeletal growth in early life. To identify common genetic variants that influence fetal skeletal growth, we meta-analyzed 22 genome-wide association studies (Stage 1; N = 28 459). We identified seven independent top single nucleotide polymorphisms (SNPs) (P < 1 × 10(-6)) for birth length, of which three were novel and four were in or near loci known to be associated with adult height (LCORL, PTCH1, GPR126 and HMGA2). The three novel SNPs were followed-up in nine replication studies (Stage 2; N = 11 995), with rs905938 in DC-STAMP domain containing 2 (DCST2) genome-wide significantly associated with birth length in a joint analysis (Stages 1 + 2; β = 0.046, SE = 0.008, P = 2.46 × 10(-8), explained variance = 0.05%). Rs905938 was also associated with infant length (N = 28 228; P = 5.54 × 10(-4)) and adult height (N = 127 513; P = 1.45 × 10(-5)). DCST2 is a DC-STAMP-like protein family member and DC-STAMP is an osteoclast cell-fusion regulator. Polygenic scores based on 180 SNPs previously associated with human adult stature explained 0.13% of variance in birth length. The same SNPs explained 2.95% of the variance of infant length. Of the 180 known adult height loci, 11 were genome-wide significantly associated with infant length (SF3B4, LCORL, SPAG17, C6orf173, PTCH1, GDF5, ZNFX1, HHIP, ACAN, HLA locus and HMGA2). This study highlights that common variation in DCST2 influences variation in early growth and adult height.
4.
  • Middeldorp, Christel M., et al. (författare)
  • The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia design, results and future prospects
  • 2019
  • Ingår i: European Journal of Epidemiology. - 0393-2990 .- 1573-7284. ; 34:3, s. 279-300
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.</p>
  •  
5.
  • Alfoeldi, Jessica, et al. (författare)
  • The genome of the green anole lizard and a comparative analysis with birds and mammals
  • 2011
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 477:7366, s. 587-591
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The evolution of the amniotic egg was one of the great evolutionary innovations in the history of life, freeing vertebrates from an obligatory connection to water and thus permitting the conquest of terrestrial environments(1). Among amniotes, genome sequences are available for mammals and birds(2-4), but not for non-avian reptiles. Here we report the genome sequence of the North American green anole lizard, Anolis carolinensis. We find that A. carolinensis microchromosomes are highly syntenic with chicken microchromosomes, yet do not exhibit the high GC and low repeat content that are characteristic of avian microchromosomes(2). Also, A. carolinensis mobile elements are very young and diverse-more so than in any other sequenced amniote genome. The GC content of this lizard genome is also unusual in its homogeneity, unlike the regionally variable GC content found in mammals and birds(5). We describe and assign sequence to the previously unknown A. carolinensis X chromosome. Comparative gene analysis shows that amniote egg proteins have evolved significantly more rapidly than other proteins. An anole phylogeny resolves basal branches to illuminate the history of their repeated adaptive radiations.</p>
  •  
6.
  • Lindblad-Toh, Kerstin, et al. (författare)
  • A high-resolution map of human evolutionary constraint using 29 mammals
  • 2011
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 478:7370, s. 476-482
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering similar to 4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for similar to 60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate-and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.</p>
  •  
7.
  • Schofield, James P. R., et al. (författare)
  • Stratification of asthma phenotypes by airway proteomic signatures
  • 2019
  • Ingår i: Journal of Allergy and Clinical Immunology. - Elsevier. - 0091-6749 .- 1097-6825. ; 144:1, s. 70-82
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Background: Stratification by eosinophil and neutrophil counts increases our understanding of asthma and helps target therapy, but there is room for improvement in our accuracy in prediction of treatment responses and a need for better understanding of the underlying mechanisms.</p><p>Objective: We sought to identify molecular subphenotypes of asthma defined by proteomic signatures for improved stratification.</p><p>Methods: Unbiased label-free quantitative mass spectrometry and topological data analysis were used to analyze the proteomes of sputum supernatants from 246 participants (206 asthmatic patients) as a novel means of asthma stratification. Microarray analysis of sputum cells provided transcriptomics data additionally to inform on underlying mechanisms.</p><p>Results: Analysis of the sputum proteome resulted in 10 clusters (ie, proteotypes) based on similarity in proteomic features, representing discrete molecular subphenotypes of asthma. Overlaying granulocyte counts onto the 10 clusters as metadata further defined 3 of these as highly eosinophilic, 3 as highly neutrophilic, and 2 as highly atopic with relatively low granulocytic inflammation. For each of these 3 phenotypes, logistic regression analysisidentified candidate protein biomarkers, and matched transcriptomic data pointed to differentially activated underlying mechanisms.</p><p>Conclusion: This study provides further stratification of asthma currently classified based on quantification of granulocytic inflammation and provided additional insight into their underlying mechanisms, which could become targets for novel therapies.</p>
  •  
8.
  • Warrington, Nicole M, et al. (författare)
  • Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors.
  • 2019
  • Ingår i: Nature genetics. - 1546-1718. ; 51:5, s. 804-814
  • Tidskriftsartikel (refereegranskat)abstract
    • Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.
  •  
9.
  • Lowe, Craig B, et al. (författare)
  • Three periods of regulatory innovation during vertebrate evolution
  • 2011
  • Ingår i: Science. - 0036-8075 .- 1095-9203. ; 333:6045, s. 1019-1024
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The gain, loss, and modification of gene regulatory elements may underlie a substantial proportion of phenotypic changes on animal lineages. To investigate the gain of regulatory elements throughout vertebrate evolution, we identified genome-wide sets of putative regulatory regions for five vertebrates, including humans. These putative regulatory regions are conserved nonexonic elements (CNEEs), which are evolutionarily conserved yet do not overlap any coding or noncoding mature transcript. We then inferred the branch on which each CNEE came under selective constraint. Our analysis identified three extended periods in the evolution of gene regulatory elements. Early vertebrate evolution was characterized by regulatory gains near transcription factors and developmental genes, but this trend was replaced by innovations near extracellular signaling genes, and then innovations near posttranslational protein modifiers.</p>
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy