SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lubinski J) "

Sökning: WFRF:(Lubinski J)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jiang, Xia, et al. (författare)
  • Shared heritability and functional enrichment across six solid cancers
  • 2019
  • Ingår i: Nature Communications. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (rg = 0.57, p = 4.6 × 10−8), breast and ovarian cancer (rg = 0.24, p = 7 × 10−5), breast and lung cancer (rg = 0.18, p =1.5 × 10−6) and breast and colorectal cancer (rg = 0.15, p = 1.1 × 10−4). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis. © 2019, The Author(s).
2.
  • Ferreira, Manuel A., et al. (författare)
  • Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer
  • 2019
  • Ingår i: Nature communications. - 2041-1723. ; 10:1, s. 1741
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer. © 2019, The Author(s).
3.
  • Bancroft, Elizabeth K, et al. (författare)
  • Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the IMPACT study
  • 2014
  • Ingår i: European urology. - 1873-7560. ; 66:3, s. 489-499
  • Tidskriftsartikel (refereegranskat)abstract
    • Men with germline breast cancer 1, early onset (BRCA1) or breast cancer 2, early onset (BRCA2) gene mutations have a higher risk of developing prostate cancer (PCa) than noncarriers. IMPACT (Identification of Men with a genetic predisposition to ProstAte Cancer: Targeted screening in BRCA1/2 mutation carriers and controls) is an international consortium of 62 centres in 20 countries evaluating the use of targeted PCa screening in men with BRCA1/2 mutations.
  •  
4.
  •  
5.
  • Mavaddat, Nasim, et al. (författare)
  • Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes
  • 2019
  • Ingår i: American journal of human genetics. - 1537-6605. ; 104:1, s. 21-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57–1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628–0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs. © 2018 The Authors
6.
  • Phelan, Catherine M., et al. (författare)
  • Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer
  • 2017
  • Ingår i: Nature genetics. - 1546-1718. ; 49:5, s. 680-691
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC.
7.
  •  
8.
  •  
9.
  •  
10.
  • Fachal, Laura, et al. (författare)
  • Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes
  • 2020
  • Ingår i: Nature genetics. - 1546-1718. ; 52:1, s. 56-73
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.
  •  
Skapa referenser, mejla, bekava och länka
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy