SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lundgren Kownacki Karin) ;mspu:(article)"

Sökning: WFRF:(Lundgren Kownacki Karin) > Tidskriftsartikel

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlberg, Erik, et al. (författare)
  • "Vi klimatforskare stödjer Greta och skolungdomarna"
  • 2019
  • Ingår i: Dagens nyheter (DN debatt). - 1101-2447.
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • DN DEBATT 15/3. Sedan industrialiseringens början har vi använt omkring fyra femtedelar av den mängd fossilt kol som får förbrännas för att vi ska klara Parisavtalet. Vi har bara en femtedel kvar och det är bråttom att kraftigt reducera utsläppen. Det har Greta Thunberg och de strejkande ungdomarna förstått. Därför stödjer vi deras krav, skriver 270 klimatforskare.
  •  
2.
  • Alametsä, Jarmo, et al. (författare)
  • Age‐related circulatory responses to whole body cooling: observations by heart rate variability
  • 2015
  • Ingår i: Finnish Journal of eHealth and eWelfare. - 1798-0798. ; 7:2-3, s. 57-64
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose was to study potential age ‐ related changes in the circulatory system via heart rate variability (HRV) by gradually lowering ambient temperature (0.2°C/min) from thermoneutral (32 C°) towards cold (18 C°). ECG was recorded from a young (31 years) and from an older subject (78 years), both males. During the tests, brachium blood pressure (BP) was recorded. During the cooling, BP increased in both subjects (young from 95/69 to 132/75 mmHg, old from 125/68 to 176/101 mmHg), the latter exhibiting a prominent rise in diastolic values after cooling. HRV parameters increased in both subjects during the cold exposure being modest in the younger subject as compared to the older one. Also, recovery from the cold in terms of HRV was faster in the younger subject. The present preliminary observations indicate that older age is coupled with altered HRV response to a mild whole‐body skin cooling.
  •  
3.
  • Havenith, George, et al. (författare)
  • A Database of Static Clothing Thermal Insulation and Vapor Permeability Values of Non-Western Ensembles for Use in ASHRAE Standard 55, ISO 7730 and ISO 9920
  • 2015
  • Ingår i: ASHRAE Transactions. - 2378-2129. ; 121:Part 1, s. 197-215
  • Tidskriftsartikel (refereegranskat)abstract
    • Four different thermal manikins (male and female shapes)in three different laboratories (UK, Sweden, and China) were used to determine the clothing thermal insulation values of 52 non-Western, mainly indoor clothing ensembles in order to expand the existing clothing database for use with ANSI/ASHRAE Standard 55-2013, Thermal Environmental Conditions for Human Occupancy (ASHRAE 2013a), ISO Standard 7730-2005, Ergonomics of the Thermal Environment -- Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and LocalThermal Comfort Criteria (ISO 2005), and ISO Standard 9920-2009, Ergonomics of the Thermal Environment -- Estimation of Thermal Insulation and Water Vapour Resistance of a Clothing Ensemble (ISO 2009). Insulation values varied over manikins, which is attributed to their different shapes and the different fit of the clothing. The mean value over three manikins is reported (with standard deviation) to include this potential real-life variation in the results. The relation of the clothing surface area factor to intrinsic clothing insulation was found to be different from that published for Western clothing. Prediction equations for the clothing surface area factor fcl based on the new data had only limited predictive power, which,however, was also the case for those obtained in the past for Western clothing. This issue seems to be commonly overlooked, as the use of these prediction equations is widespread. It has to be concluded that reliable fcl values can only be obtained when they are actually measured, as in the present work. However, we suggest that the concept of the fcl factor for the non-Western clothing may not be appropriate and may require further attention in research, as wide-falling-robes and gowns do not match the cylindrical clothing and air layer model on which the fcl concept is based. In summary, the results provide an extensive database of insulation values of non-Western clothing that is expected to be a valuable addition to ASHRAE Standard 55-2013 (ASHRAE 2013a), ISO Standard 7730-2005 (ISO 2005), and ISO Standard 9920-2009 (ISO 2009).
  •  
4.
  •  
5.
  • Lundgren-Kownacki, Karin, et al. (författare)
  • Challenges of using air conditioning in an increasingly hot climate
  • 2018
  • Ingår i: International Journal of Biometeorology. - : Springer Science and Business Media LLC. - 0020-7128 .- 1432-1254. ; 62, s. 401-401
  • Tidskriftsartikel (refereegranskat)abstract
    • At present, air conditioning (AC) is the most effective means for the cooling of indoor space. However, its increased global use is problematic for various reasons. This paper explores the challenges linked to increased AC use and discusses more sustainable alternatives. A literature review was conducted applying a transdisciplinary approach. It was further complemented by examples from cities in hot climates. To analyse the findings, an analytical framework was developed which considers four societal levels—individual, community, city, and national. The main challenges identified from the literature review are as follows: environmental, organisational, socio-economical, biophysical and behavioural. The paper also identifies several measures that could be taken to reduce the fast growth of AC use. However, due to the complex nature of the problem, there is no single solution to provide sustainable cooling. Alternative solutions were categorised in three broad categories: climate-sensitive urban planning and building design, alternative cooling technologies, and climate-sensitive attitudes and behaviour. The main findings concern the problems arising from leaving the responsibility to come up with cooling solutions entirely to the individual, and how different societal levels can work towards more sustainable cooling options. It is concluded that there is a need for a more holistic view both when it comes to combining various solutions as well as involving various levels in society.
  •  
6.
  • Lundgren-Kownacki, Karin, et al. (författare)
  • Climate change-induced heat risks for migrant populations working at brick kilns in India : a transdisciplinary approach
  • 2018
  • Ingår i: International Journal of Biometeorology. - : Springer Science and Business Media LLC. - 0020-7128 .- 1432-1254. ; 62:3, s. 347-358
  • Tidskriftsartikel (refereegranskat)abstract
    • During the summer of 2015, India was hit by a scorching heat wave that melted pavements in Delhi and caused thousands of deaths, mainly among the most marginalized populations. One such group facing growing heat risks from both occupational and meteorological causes are migrant brick kiln workers. This study evaluates both current heat risks and the potential future impacts of heat caused by climate change, for the people working at brick kilns in India. A case study of heat stress faced by people working at brick kilns near Chennai, India, is the anchor point around which a transdisciplinary approach was applied. Around Chennai, the situation is alarming since occupational heat exposure in the hot season from March to July is already at the upper limits of what humans can tolerate before risking serious impairment. The aim of the study was to identify new pathways for change and soft solutions by both reframing the problem and expanding the solution space being considered in order to improve the quality of life for the migrant populations at the brick kilns. Technical solutions evaluated include the use of sun-dried mud bricks and other locally “appropriate technologies” that could mitigate the worsening of climate change-induced heat. Socio-cultural solutions discussed for empowering the people who work at the brick kilns include participatory approaches such as open re-localization, and rights-based approaches including the environmental sustainability and the human rights-based approach framework. Our analysis suggests that an integrative, transdisciplinary approach could incorporate a more holistic range of technical and socio-culturally informed solutions in order to protect the health of people threatened by India’s brick kiln industry.
  •  
7.
  • Lundgren Kownacki, Karin, et al. (författare)
  • Correspondence to the supplementary opinions on alternative cooling technologies in hot climate
  • 2018
  • Ingår i: International Journal of Biometeorology. - : Springer Science and Business Media LLC. - 0020-7128 .- 1432-1254. ; 62:10, s. 1929-1929
  • Tidskriftsartikel (refereegranskat)abstract
    • At present, air conditioning (AC) is the most effective means for the cooling of indoor space. However, its increased global use is problematic for various reasons. This is a correspondence to the supplementary opinion provided by Dr. Bin Yang, Dr. Stefano Schiavon, and Dr. Faming Wang to our paper titled “Challenges of using air conditioning in an increasingly hot climate.” The paper explored the challenges linked to increased AC use and discusses more sustainable alternatives. The supplementary opinion provides a great technical complement to our paper. However, there is a need for a more holistic view both when it comes to combining various solutions and involving various levels in society.
  •  
8.
  • Lundgren Kownacki, Karin, et al. (författare)
  • Effects of Heat Stress on Working Populations when facing Climate Change
  • 2013
  • Ingår i: Industrial Health. - : National Institute of Industrial Health. - 1880-8026 .- 0019-8366. ; 51:1, s. 3-15
  • Tidskriftsartikel (refereegranskat)abstract
    • It is accepted that the earth’s climate is changing in an accelerating pace, with already documented implications for human health and the environment. This literature review provides an overview of existing research findings about the effects of heat stress on the working population in relation to climate change. In the light of climate change adaptation, the purpose of the literature review was to explore recent and previous research into the impacts of heat stress on humans in an occupational setting. Heat stress in the workplace has been researched extensively in the past however, in the contemporary context of climate change, information is lacking on its extent and implications. The main factors found to exacerbate heat stress in the current and future workplace are the urban ‘heat island effect’, physical work, individual differences, and the developing country context where technological fixes are often not applicable. There is also a lack of information on the effects on vulnerable groups such as elderly people and pregnant women. As increasing temperatures reduce work productivity, world economic productivity could be condensed, affecting developing countries in the tropical climate zone disproportionately. Future research is needed taking an interdisciplinary approach, including social, economic, environmental and technical aspects.
  •  
9.
  • Lundgren-Kownacki, Karin, et al. (författare)
  • Exploring how a traditional diluted yoghurt drink may mitigate heat strain during medium-intensity intermittent work: a multidisciplinary study of occupational heat strain
  • 2018
  • Ingår i: Industrial Health. - : National Institute of Industrial Health. - 0019-8366 .- 1880-8026. ; 56:2, s. 106-121
  • Tidskriftsartikel (refereegranskat)abstract
    • It is common practice in India to consume the dairy drink buttermilk as a way of mitigating occupational heat strain. This paper explores the thermoregulatory and hydration benefits of drinking buttermilk but also the impacts of work in a hot environment on the gut microbiota, renal and cognitive function. Twelve healthy participants were subjected to a 3-h period of medium load physical intermittent work in a climatic chamber (34 degrees C, 60% RH). The subjects were given water, buttermilk (700 ml) or no rehydration at random. Mean body temperatures when no rehydration was given were significantly higher (p <= 0.001). When subjects drank water or buttermilk they had a lower sweat rate than with no rehydration (p <= 0.05) and the perception of feeling hot, uncomfortable, thirsty and physically exerted was significantly reduced (p <= 0.05). A hormonal stress response at the end of the exposure was seen when not drinking (p <= 0.05). No differences in cognitive abilities and gut microbiota were found. The exposure lowered the renal blood flow suggesting an acute impact of short term heat exposure. It was also found that buttermilk has a protective effect on this impact. Our results demonstrated that keeping hydrated by water/buttermilk consumption mitigates heat strain in well-nourished subjects.
  •  
10.
  • Lundgren Kownacki, Karin, et al. (författare)
  • Heat stress in indoor environments of Scandinavian urban areas : A literature review
  • 2019
  • Ingår i: International Journal of Environmental Research and Public Health. - : MDPI AG. - 1660-4601. ; 16:560
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change increases the risks of heat stress, especially in urban areas where urban heat islands can develop. This literature review aims to describe how severe heat can occur and be identified in urban indoor environments, and what actions can be taken on the local scale. There is a connection between the outdoor and the indoor climate in buildings without air conditioning, but the pathways leading to the development of severe heat levels indoors are complex. These depend, for example, on the type of building, window placement, the residential area’s thermal outdoor conditions, and the residents’ influence and behavior. This review shows that only few studies have focused on the thermal environment indoors during heat waves, despite the fact that peoplecommonly spend most of their time indoors and are likely to experience increased heat stress Indoors in the future. Among reviewed studies, it was found that the indoor temperature can reach levels 50% higher in C than the outdoor temperature, which highlights the importance of assessment and remediation of heat indoors. Further, most Heat-Health Warning Systems (HHWS) are based on the outdoor climate only, which can lead to a misleading interpretation of the health effects and associated solutions. In order to identify severe heat, six factors need to be taken into account, including air temperature, heat radiation, humidity, and air movement as well as the physical activity and the clothes worn by the individual. Heat stress can be identified using a heat index that includes these six factors. This paper presents some examples of practical and easy to use heat indices that are relevant for indoor environments as well as models that can be applied in indoor environments at the city level. However, existing indexes are developed for healthy workers and do not account for vulnerable groups, different uses, and daily variations. As a result, this paper highlights the needfor the development of a heat index or the adjustment of current thresholds to apply specifically to indoor environments, its different uses, and vulnerable groups. There are several actions that can be taken to reduce heat indoors and thus improve the health and well-being of the population in urbanareas. Examples of effective measures to reduce heat stress indoors include the use of shading devices such as blinds and vegetation as well as personal cooling techniques such as the use of fans and cooling vests. Additionally, the integration of innovative Phase Change Materials (PCM) into facades, roofs, floors, and windows can be a promising alternative once no negative health and environmental effects of PCM can be ensured.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy