SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Luo Yong) ;lar1:(cth)"

Sökning: WFRF:(Luo Yong) > Chalmers tekniska högskola

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • An, T., et al. (författare)
  • Analysis on microstructure and friction wear performance of chromium carbide/Ni 3Al composite surfacing layer
  • 2012
  • Ingår i: Hanjie Xuebao/Transactions of the China Welding Institution. - 0253-360X. ; 33:2, s. 101-104
  • Tidskriftsartikel (refereegranskat)abstract
    • Microstructure of chromium carbide reinforced Ni 3Al-based matrix composite coating prepared by argon tungsten-arc welding was investigated with optical microscope, scanning electron microscopy (SEM), electron probe micro-analysis (EPMA) and X-ray diffraction (XRD). The wear performance of the coating and cast iron of piston ring were tested by a Pin-on-Disc tribometer. The results indicated that the Ni 3Al-based matrix was formed during welding, a large number of fine carbide particles such as Cr 3C 2 and Cr 7C 3 dispersed in it; The particle of Cr 3C 2 in welding wire was dissolved and re-precipitated during hardfacing. The re-precipitation of chromium carbide particle contains Fe, Ni elements and forms strong metallurgically bond with Ni 3Al-based matrix. Diffuse distribution of chromium carbide particles and Cr solid-solution in Ni 3Al-based matrix, makes the surfacing layer with higher hardness. The hardfaceing layer shows excellent dry friction wear resistance and its friction coefficient is 0.23, lower than 0.39 which is the friction coefficient of piston material of vermicular graphite cast iron. The wear rate of hardfaceing layer is only 43 percent of vermicular graphite cast iron.
  •  
4.
  • Luo, Xin, 1983, et al. (författare)
  • Boron nitride nanofiber and indium composite based thermal interface materials for electronics heat dissipation applications
  • 2014
  • Ingår i: Journal of Materials Science: Materials in Electronics. - 1573-482X .- 0957-4522. ; 25:5, s. 2333-2338
  • Tidskriftsartikel (refereegranskat)abstract
    • With increased power density and continued miniaturization, effective thermal dissipation is of significant importance for operational lifetime and reliability of electronic system. Advanced thermal interface materials (TIMs) with excellent thermal performance need to be designed and developed. Here we report novel TIMs consisted of boron nitride (BN) nanofibers and pure indium (In) solder for heat dissipation applications. The BN nanofibers are fabricated by electrospinning process and nitridation treatment. After surface metallization by sputtering, the porous BN film is infiltrated with liquid indium by squeeze casting to form the final solid composites. The new composites show the in-plane and through-plane thermal conductivity respectively of 60 and 20 W/m K. The direction dependence thermal properties of the TIM are due to the anisotropic thermal performance of BN nanofibers in the composite. A low thermal contact resistance of 0.2 K mm2/W is also achieved at the interface between this new composite and copper substrate. These competent thermal properties demonstrate the great potential of the BN–In TIMs in thermal management for electronic system.
  •  
5.
  • Luo, Xin, 1983, et al. (författare)
  • Novel thermal interface materials: boron nitride nanofiber and indium composites for electronics heat dissipation applications
  • 2014
  • Ingår i: Journal of Materials Science: Materials in Electronics. - : Springer Science and Business Media LLC. - 1573-482X .- 0957-4522. ; 25:5, s. 2333-2338
  • Tidskriftsartikel (refereegranskat)abstract
    • With increased power density and continued miniaturization, effective thermal dissipation is of significant importance for operational lifetime and reliability of electronic system. Advanced thermal interface materials (TIMs) with excellent thermal performance need to be designed and developed. Here we report novel TIMs consisted of boron nitride (BN) nanofibers and pure indium (In) solder for heat dissipation applications. The BN nanofibers are fabricated by electrospinning process and nitridation treatment. After surface metallization by sputtering, the porous BN film is infiltrated with liquid indium by squeeze casting to form the final solid composites. The new composites show the in-plane and through-plane thermal conductivity respectively of 60 and 20 W/m K. The direction dependence thermal properties of the TIM are due to the anisotropic thermal performance of BN nanofibers in the composite. A low thermal contact resistance of 0.2 K mm(2)/W is also achieved at the interface between this new composite and copper substrate. These competent thermal properties demonstrate the great potential of the BN-In TIMs in thermal management for electronic system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy