SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(M Ridker Paul) srt2:(2019);lar1:(uu)"

Search: WFRF:(M Ridker Paul) > (2019) > Uppsala University

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Justice, Anne E., et al. (author)
  • Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution
  • 2019
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:3, s. 452-469
  • Journal article (peer-reviewed)abstract
    • Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF >= 5%) and nine low-frequency or rare (MAF < 5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
  •  
2.
  • Wuttke, Matthias, et al. (author)
  • A catalog of genetic loci associated with kidney function from analyses of a million individuals
  • 2019
  • In: Nature Genetics. - : NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 51:6, s. 957-972
  • Journal article (peer-reviewed)abstract
    • Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
  •  
3.
  • Pennells, Lisa, et al. (author)
  • Equalization of four cardiovascular risk algorithms after systematic recalibration : individual-participant meta-analysis of 86 prospective studies
  • 2019
  • In: European Heart Journal. - : Oxford University Press (OUP). - 0195-668X .- 1522-9645. ; 40:7, s. 621-
  • Journal article (peer-reviewed)abstract
    • Aims: There is debate about the optimum algorithm for cardiovascular disease (CVD) risk estimation. We conducted head-to-head comparisons of four algorithms recommended by primary prevention guidelines, before and after ‘recalibration’, a method that adapts risk algorithms to take account of differences in the risk characteristics of the populations being studied.Methods and results: Using individual-participant data on 360 737 participants without CVD at baseline in 86 prospective studies from 22 countries, we compared the Framingham risk score (FRS), Systematic COronary Risk Evaluation (SCORE), pooled cohort equations (PCE), and Reynolds risk score (RRS). We calculated measures of risk discrimination and calibration, and modelled clinical implications of initiating statin therapy in people judged to be at ‘high’ 10 year CVD risk. Original risk algorithms were recalibrated using the risk factor profile and CVD incidence of target populations. The four algorithms had similar risk discrimination. Before recalibration, FRS, SCORE, and PCE over-predicted CVD risk on average by 10%, 52%, and 41%, respectively, whereas RRS under-predicted by 10%. Original versions of algorithms classified 29–39% of individuals aged ≥40 years as high risk. By contrast, recalibration reduced this proportion to 22–24% for every algorithm. We estimated that to prevent one CVD event, it would be necessary to initiate statin therapy in 44–51 such individuals using original algorithms, in contrast to 37–39 individuals with recalibrated algorithms.Conclusion: Before recalibration, the clinical performance of four widely used CVD risk algorithms varied substantially. By contrast, simple recalibration nearly equalized their performance and improved modelled targeting of preventive action to clinical need.
  •  
4.
  • Spracklen, Cassandra N., et al. (author)
  • Exome-Derived Adiponectin-Associated Variants Implicate Obesity and Lipid Biology
  • 2019
  • In: American Journal of Human Genetics. - : CELL PRESS. - 0002-9297 .- 1537-6605. ; 105:1, s. 15-28
  • Journal article (peer-reviewed)abstract
    • Circulating levels of adiponectin, an adipocyte-secreted protein associated with cardiovascular and metabolic risk, are highly heritable. To gain insights into the biology that regulates adiponectin levels, we performed an exome array meta-analysis of 265,780 genetic variants in 67,739 individuals of European, Hispanic, African American, and East Asian ancestry. We identified 20 loci associated with adiponectin, including 11 that had been reported previously (p < 2 x 10(-7)). Comparison of exome array variants to regional linkage disequilibrium (LD) patterns and prior genome-wide association study (GWAS) results detected candidate variants (r(2) > .60) spanning as much as 900 kb. To identify potential genes and mechanisms through which the previously unreported association signals act to affect adiponectin levels, we assessed cross-trait associations, expression quantitative trait loci in subcutaneous adipose, and biological pathways of nearby genes. Eight of the nine loci were also associated (p < 1 x 10(-4)) with at least one obesity or lipid trait. Candidate genes include PRKAR2A, PTH1R, and HDAC9, which have been suggested to play roles in adipocyte differentiation or bone marrow adipose tissue. Taken together, these findings provide further insights into the processes that influence circulating adiponectin levels.
  •  
5.
  • Schmidt, Amand F., et al. (author)
  • Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9
  • 2019
  • In: BMC Cardiovascular Disorders. - : BMC. - 1471-2261 .- 1471-2261. ; 19:1
  • Journal article (peer-reviewed)abstract
    • Background: We characterised the phenotypic consequence of genetic variation at the PCSK9 locus and compared findings with recent trials of pharmacological inhibitors of PCSK9. Methods: Published and individual participant level data (300,000+ participants) were combined to construct a weighted PCSK9 gene-centric score (GS). Seventeen randomized placebo controlled PCSK9 inhibitor trials were included, providing data on 79,578 participants. Results were scaled to a one mmol/L lower LDL-C concentration. Results: The PCSK9 GS (comprising 4 SNPs) associations with plasma lipid and apolipoprotein levels were consistent in direction with treatment effects. The GS odds ratio (OR) for myocardial infarction (MI) was 0.53 (95% CI 0.42; 0.68), compared to a PCSK9 inhibitor effect of 0.90 (95% CI 0.86; 0.93). For ischemic stroke ORs were 0.84 (95% CI 0.57; 1.22) for the GS, compared to 0.85 (95% CI 0.78; 0.93) in the drug trials. ORs with type 2 diabetes mellitus (T2DM) were 1.29 (95% CI 1.11; 1.50) for the GS, as compared to 1.00 (95% CI 0.96; 1.04) for incident T2DM in PCSK9 inhibitor trials. No genetic associations were observed for cancer, heart failure, atrial fibrillation, chronic obstructive pulmonary disease, or Alzheimer's disease - outcomes for which large-scale trial data were unavailable. Conclusions: Genetic variation at the PCSK9 locus recapitulates the effects of therapeutic inhibition of PCSK9 on major blood lipid fractions and MI. While indicating an increased risk of T2DM, no other possible safety concerns were shown; although precision was moderate.
  •  
6.
  • Ahmad, Shafqat, et al. (author)
  • Gene-Based Elevated Triglycerides and Type 2 Diabetes Mellitus Risk in the Women's Genome Health Study
  • 2019
  • In: Arteriosclerosis, Thrombosis and Vascular Biology. - 1079-5642 .- 1524-4636. ; 39:1, s. 97-106
  • Journal article (peer-reviewed)abstract
    • Objective- Higher triglyceride (TG) is a risk factor for incident type 2 diabetes mellitus (T2DM), but paradoxically, genetic susceptibility for higher TG has been associated with lower T2DM risk. There is also evidence that the genetic association may be modified by baseline TG. Whether such associations can be replicated and the interaction is selective for certain TG-rich lipoprotein particles remains to be explored.Approach and Results-Cox regression involving TG, TG-rich lipoprotein particles, and genetic determinants of TG was performed among 15 813 participants with baseline fasting status in the WGHS (Women's Genome Health Study), including 1453 T2DM incident cases during a mean 18.6 (SD= 5.3) years of follow-up. A weighted, 40-single-nucleotide polymorphism TG genetic risk score was inversely associated with incident T2DM (hazard ratio [95% CI], 0.66 [0.580.75]/ 10-TG risk alleles; P< 0.0001) with adjustment for baseline body mass index, HDL (high-density lipoprotein) cholesterol, and TG. TG-associated risk was higher among individuals in the low compared with the high 40-singlenucleotide polymorphism TG genetic risk score tertile (hazard ratio [95% CI], 1.98 [1.83-2.14] versus 1.68 [1.58-1.80] per mmol/L; P-interaction = 0.0007). In TG-adjusted analysis, large and medium but not small TG-rich lipoprotein particles were associated with higher T2DM incidence for successively lower 40-single-nucleotide polymorphism TG genetic risk score tertiles, P-interaction = 0.013, 0.012, and 0.620 across tertiles, respectively.Conclusions-Our results confirm the previous observations of the paradoxical associations of TG with T2DM while focusing attention on the larger TG-rich lipoprotein particle subfractions, suggesting their importance in clinical profiling of T2DM risk.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view