SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Madec G.) "

Sökning: WFRF:(Madec G.)

  • Resultat 1-10 av 19
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Keppler, M., et al. (författare)
  • Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70
  • 2018
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • <p><em>Context</em>. Young circumstellar disks are the birthplaces of planets. Their study is of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very few detections of planet candidates within these disks exist, and most of them are currently suspected to be disk features.</p><p><em>Aims</em>. In this context, the transition disk around the young star PDS 70 is of particular interest, due to its large gap identified in previous observations, indicative of ongoing planet formation. We aim to search for the presence of an embedded young planet and search for disk structures that may be the result of disk-planet interactions and other evolutionary processes.</p><p><em>Methods</em>. We analyse new and archival near-infrared images of the transition disk PDS 70 obtained with the VLT/SPHERE, VLT/NaCo, and Gemini/NICI instruments in polarimetric differential imaging and angular differential imaging modes.</p><p><em>Results</em>. We detect a point source within the gap of the disk at about 195 mas (similar to 22 au) projected separation. The detection is confirmed at five different epochs, in three filter bands and using different instruments. The astrometry results in an object of bound nature, with high significance. The comparison of the measured magnitudes and colours to evolutionary tracks suggests that the detection is a companion of planetary mass. The luminosity of the detected object is consistent with that of an L-type dwarf, but its IR colours are redder, possibly indicating the presence of warm surrounding material. Further, we confirm the detection of a large gap of similar to 54 au in size within the disk in our scattered light images, and detect a signal from an inner disk component. We find that its spatial extent is very likely smaller than similar to 17 au in radius, and its position angle is consistent with that of the outer disk. The images of the outer disk show evidence of a complex azimuthal brightness distribution which is different at different wavelengths and may in part be explained by Rayleigh scattering from very small grains.</p><p><em>Conclusions</em>. The detection of a young protoplanet within the gap of the transition disk around PDS 70 opens the door to a so far observationally unexplored parameter space of planetary formation and evolution. Future observations of this system at different wavelengths and continuing astrometry will allow us to test theoretical predictions regarding planet-disk interactions, planetary atmospheres, and evolutionary models.</p>
  •  
2.
  • Bonnefoy, M., et al. (författare)
  • First light of the VLT planet finder SPHERE IV. Physical and chemical properties of the planets around HR8799
  • 2016
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 587
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Context. The system of four planets discovered around the intermediate-mass star HR8799 offers a unique opportunity to test planet formation theories at large orbital radii and to probe the physics and chemistry at play in the atmospheres of self-luminous young (similar to 30 Myr) planets. We recently obtained new photometry of the four planets and low-resolution (R similar to 30) spectra of HR8799 d and e with the SPHERE instrument (Paper III).</p><p>Aims. In this paper (Paper IV), we aim to use these spectra and available photometry to determine how they compare to known objects, what the planet physical properties are, and how their atmospheres work.</p><p>Methods. We compare the available spectra, photometry, and spectral energy distribution (SED) of the planets to field dwarfs and young companions. In addition, we use the extinction from corundum, silicate (enstatite and forsterite), or iron grains likely to form in the atmosphere of the planets to try to better understand empirically the peculiarity of their spectrophotometric properties. To conclude, we use three sets of atmospheric models (BT-SETTL14, Cloud-AE60, Exo-REM) to determine which ingredients are critically needed in the models to represent the SED of the objects, and to constrain their atmospheric parameters (T-eff, log g, M/H).</p><p>Results. We find that HR8799d and e properties are well reproduced by those of L6-L8 dusty dwarfs discovered in the field, among which some are candidate members of young nearby associations. No known object reproduces well the properties of planets b and c. Nevertheless, we find that the spectra and WISE photometry of peculiar and/or young early-T dwarfs reddened by submicron grains made of corundum, iron, enstatite, or forsterite successfully reproduce the SED of these planets. Our analysis confirms that only the Exo-REM models with thick clouds fit (within 2 sigma) the whole set of spectrophotometric datapoints available for HR8799 d and e for T-eff = 1200 K, log g in the range 3.0-4.5, and M/H = +0.5. The models still fail to reproduce the SED of HR8799c and b. The determination of the metallicity, log g, and cloud thickness are degenerate.</p><p>Conclusions. Our empirical analysis and atmospheric modelling show that an enhanced content in dust and decreased CIA of H-2 is certainly responsible for the deviation of the properties of the planet with respect to field dwarfs. The analysis suggests in addition that HR8799c and b have later spectral types than the two other planets, and therefore could both have lower masses.</p>
  •  
3.
  • Chauvin, G., et al. (författare)
  • Discovery of a warm, dusty giant planet around HIP 65426
  • 2017
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • <p><em>Aims</em>. The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories.</p><p><em>Methods</em>. We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the similar to 17 Myr old Lower Centaurus-Crux association.</p><p><em> Results</em>. At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2 mu m indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 M-Jup, T-eff = 1300-1600K and R = 1.5 +/- 0.1 R-Jup giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log(g) = 4.0-5.0 with smaller radii (1.0-1.3 R-Jup).</p><p><em>Conclusions</em>. Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution.</p>
  •  
4.
  • Lagrange, A. -M., et al. (författare)
  • Post-conjunction detection of beta Pictoris b with VLT/SPHERE
  • 2019
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 621
  • Tidskriftsartikel (refereegranskat)abstract
    • <p><em>Context</em>. With an orbital distance comparable to that of Saturn in the solar system, beta Pictoris b is the closest (semi-major axis similar or equal to 9 au) exoplanet that has been imaged to orbit a star. Thus it offers unique opportunities for detailed studies of its orbital, physical, and atmospheric properties, and of disk-planet interactions. With the exception of the discovery observations in 2003 with NaCo at the Very Large Telescope (VLT), all following astrometric measurements relative to beta Pictoris have been obtained in the southwestern part of the orbit, which severely limits the determination of the planet's orbital parameters.</p><p><em>Aims</em>. We aimed at further constraining beta Pictoris b orbital properties using more data, and, in particular, data taken in the northeastern part of the orbit.</p><p><em>Methods</em>. We used SPHERE at the VLT to precisely monitor the orbital motion of beta beta Pictoris b since first light of the instrument in 2014.</p><p><em>Results</em>. We were able to monitor the planet until November 2016, when its angular separation became too small (125 mas, i.e., 1.6 au) and prevented further detection. We redetected beta Pictoris b on the northeast side of the disk at a separation of 139 mas and a PA of 30 degrees in September 2018. The planetary orbit is now well constrained. With a semi-major axis (sma) of a = 9.0 +/- 0.5 au (1 sigma), it definitely excludes previously reported possible long orbital periods, and excludes beta Pictoris b as the origin of photometric variations that took place in 1981. We also refine the eccentricity and inclination of the planet. From an instrumental point of view, these data demonstrate that it is possible to detect, if they exist, young massive Jupiters that orbit at less than 2 au from a star that is 20 pc away.</p>
  •  
5.
  • Zurlo, A., et al. (författare)
  • First light of the VLT planet finder SPHERE III. New spectrophotometry and astrometry of the HR 8799 exoplanetary system
  • 2016
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 587
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Context. The planetary system discovered around the young A-type HR8799 provides a unique laboratory to: a) test planet formation theories; b) probe the diversity of system architectures at these separations, and c) perform comparative (exo)planetology.</p><p>Aims. We present and exploit new near-infrared images and integral-field spectra of the four gas giants surrounding HR8799 obtained with SPHERE, the new planet finder instrument at the Very Large Telescope, during the commissioning and science verification phase of the instrument (July-December 2014). With these new data, we contribute to completing the spectral energy distribution (SED) of these bodies in the 1.0-2.5 mu m range. We also provide new astrometric data, in particular for planet e, to further constrain the orbits.</p><p>Methods. We used the infrared dual-band imager and spectrograph (IRDIS) subsystem to obtain pupil-stabilized, dual-band H2H3 (1.593 mu m, 1.667 mu m), K1K2 (2.110 mu m, 2.251 mu m), and broadband J (1.245 mu m) images of the four planets. IRDIS was operated in parallel with the integral field spectrograph (IFS) of SPHERE to collect low-resolution (R similar to 30), near-infrared (0.94-1.64 mu m) spectra of the two innermost planets HR8799 d and e. The data were reduced with dedicated algorithms, such as the Karhunen-Loeve image projection (KLIP), to reveal the planets. We used the so-called negative planets injection technique to extract their photometry, spectra, and measure their positions. We illustrate the astrometric performance of SPHERE through sample orbital fits compatible with SPHERE and literature data.</p><p>Results. We demonstrated the ability of SPHERE to detect and characterize planets in this kind of systems, providing spectra and photometry of its components. The spectra improve upon the signal-to-noise ratio of previously obtained data and increase the spectral coverage down to the Y band. In addition, we provide the first detection of planet e in the J band. Astrometric positions for planets HR8799 bcde are reported for the epochs of July, August, and December 2014. We measured the photometric values in J, H2H3, K1K2 bands for the four planets with a mean accuracy of 0.13 mag. We found upper limit constraints on the mass of a possible planet f of 3-7 M-Jup. Our new measurements are more consistent with the two inner planets d and e being in a 2d:1e or 3d:2e resonance. The spectra of HR8799 d and e are well matched by those of L6-8 field dwarfs. However, the SEDs of these objects are redder than field L dwarfs longward of 1.6 mu m.</p>
  •  
6.
  • Angers-Loustau, A., et al. (författare)
  • The challenges of designing a benchmark strategy for bioinformatics pipelines in the identification of antimicrobial resistance determinants using next generation sequencing technologies
  • 2018
  • Ingår i: F1000Research. - 2046-1402. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Next-Generation Sequencing (NGS) technologies are expected to play a crucial role in the surveillance of infectious diseases, with their unprecedented capabilities for the characterisation of genetic information underlying the virulence and antimicrobial resistance (AMR) properties of microorganisms.  In the implementation of any novel technology for regulatory purposes, important considerations such as harmonisation, validation and quality assurance need to be addressed.  NGS technologies pose unique challenges in these regards, in part due to their reliance on bioinformatics for the processing and proper interpretation of the data produced.  Well-designed benchmark resources are thus needed to evaluate, validate and ensure continued quality control over the bioinformatics component of the process.  This concept was explored as part of a workshop on "Next-generation sequencing technologies and antimicrobial resistance" held October 4-5 2017.   Challenges involved in the development of such a benchmark resource, with a specific focus on identifying the molecular determinants of AMR, were identified. For each of the challenges, sets of unsolved questions that will need to be tackled for them to be properly addressed were compiled. These take into consideration the requirement for monitoring of AMR bacteria in humans, animals, food and the environment, which is aligned with the principles of a "One Health" approach.
  •  
7.
  • Cheetham, A., et al. (författare)
  • Discovery of a brown dwarf companion to the star HIP 64892
  • 2018
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 615
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>We report the discovery of a bright, brown dwarf companion to the star HIP 64892, imaged with VLT/SPHERE during the SHINE exoplanet survey. The host is a B9.5V member of the Lower-Centaurus-Crux subgroup of the Scorpius Centaurus OB association. The measured angular separation of the companion (1.2705 +/- 0.0023) corresponds to a projected distance of 159 +/- 12AU. We observed the target with the dual-band imaging and long-slit spectroscopy modes of the IRDIS imager to obtain its spectral energy distribution (SED) and astrometry. In addition, we reprocessed archival NACO L-band data, from which we also recover the companion. Its SED is consistent with a young (&lt;30 Myr), low surface gravity object with a spectral type of M9 gamma +/- 1. From comparison with the BT-Settl atmospheric models we estimate an effective temperature of T-eff = 2600 +/- 100 K, and comparison of the companion photometry to the COND evolutionary models yields a mass of similar to 29-37 M-J at the estimated age of 16(-7)(+15) Myr for the system. The star HIP 64892 is a rare example of an extreme-mass ratio system (q similar to 0.01) and will be useful for testing models relating to the formation and evolution of such low-mass objects.</p>
  •  
8.
  • Lagrange, A. -M., et al. (författare)
  • A narrow, edge-on disk resolved around HD 106906 with SPHERE
  • 2016
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 586
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Context. HD 106906AB is the only young binary system so far around which a planet has been imaged and a debris disk has been shown to exist, thanks to a strong IR excess. As such, it represents a unique opportunity for studying the dynamics of young planetary systems. Aims. We aim at further investigating the close (tens of au scales) environment of the HD 106906AB system. Methods. We used the extreme adaptive-optics-fed, high-contrast imager SPHERE that has recently been installed on the VLT to observe HD 106906. Both the IRDIS imager and the Integral Field Spectrometer were used. Results. We discovered a highly inclined, ring-like disk at a distance of 65 au from the star. The disk shows a strong brightness asymmetry with respect to its semi-major axis. It shows a smooth outer edge, compatible with ejection of small grains by the stellar radiation pressure. We show furthermore that the planet's projected position is significantly above the PA of the disk. Given the determined disk inclination, it is not excluded, however, that the planet could still orbit within the disk plane if at a large separation (2000 3000 au). We identified several additional point sources in the SPHERE /IRDIS field of view that appear to be background objects. We compare this system with other debris disks sharing similarities, and we briefly discuss the present results in the framework of dynamical evolution.</p>
  •  
9.
  • Vigan, A., et al. (författare)
  • First light of the VLT planet finder SPHERE I. Detection and characterization of the substellar companion GJ 758 B
  • 2016
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 587
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>GJ 758 B is a brown dwarf companion to a nearby (15.76%) solar-type, metal-rich (M/H = +0.2 dex) main-sequence star (G9V) that was discovered with Subaru/HiCIAO in 2009. From previous studies, it has drawn attention as being the coldest (similar to 600 K) companion ever directly imaged around a neighboring star. We present new high-contrast data obtained during the commissioning of the SPHERE instrument at the Very Large Telescope (VLT). The data was obtained in Y-, J-, H-, and K-s-bands with the dual-band imaging (DBI) mode of IRDIS, thus providing a broad coverage of the full near-infrared (near-IR) range at higher contrast and better spectral sampling than previously reported. In this new set of high-quality data, we report the re-detection of the companion, as well as the first detection of a new candidate closer-in to the star. We use the new eight photometric points for an extended comparison of GJ 758 B with empirical objects and four families of atmospheric models. From comparison to empirical object, we estimate a T8 spectral type, but none of the comparison objects can accurately represent the observed near-IR fluxes of GJ 758 B. From comparison to atmospheric models, we attribute a T-eff = 600 +/- 100 K, but we find that no atmospheric model can adequately fit all the fluxes of GJ 758 B. The lack of exploration of metal enrichment in model grids appears as a major limitation that prevents an accurate estimation of the companion physical parameters. The photometry of the new candidate companion is broadly consistent with L-type objects, but a second epoch with improved photometry is necessary to clarify its status. The new astrometry of GJ 758 B shows a significant proper motion since the last epoch. We use this result to improve the determination of the orbital characteristics using two fitting approaches: Least-Squares Monte Carlo and Markov chain Monte Carlo. We confirm the high-eccentricity of the orbit (peak at 0.5), and find a most likely semi-major axis of 46.05 AU. We also use our imaging data, as well as archival radial velocity data, to reject the possibility that this is a false positive effect created by an unseen, closer-in, companion. Finally, we analyze the sensitivity of our data to additional closer-in companions and reject the possibility of other massive brown dwarf companions down to 4-5 AU.</p>
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19
  • [1]2Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy