SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Magnuson Ann) "

Search: WFRF:(Magnuson Ann)

  • Result 1-10 of 65
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Agervald, Åsa (author)
  • Maturation and Regulation of Cyanobacterial Hydrogenases
  • 2009
  • Doctoral thesis (other academic/artistic)abstract
    • Accelerated global warming plus an increasing need for energy is an equation not easily solved, thus new forms of sustainable energy production are urgently requested. In this context hydrogen production based on a cyanobacterial system offers an environmentally friendly alternative for energy capture and conversion. Cyanobacteria can produce hydrogen gas from sun light and water through the combination of photosystems and hydrogenases, and are suitable to cultivate in large scale. In the present thesis the maturation process of [NiFe]-hydrogenases is investigated with special focus on transcription of the accessory genes encoding proteins needed for assembly of the large and possibly also for the small hydrogenase subunit. The cyanobacteria used are two N2-fixing, filamentous, heterocystous strains; Nostoc sp. strain PCC 7120 and Nostoc punctiforme PCC 73102. For a biotechnological exploration of hydrogen production tools for regulatory purposes are important. The transcription factor CalA (cyanobacterial AbrB like) (Alr0946 in the genome) in Nostoc sp. strain PCC 7120 was found to be involved in hydrogen metabolism by regulating the transcription of the maturation protein HypC. Further the bidirectional hydrogenase activity was down-regulated in the presence of elevated levels of CalA, a result important to take into account when optimizing cyanobacteria for hydrogen production. CalA regulates at least 25 proteins in Nostoc sp. strain PCC 7120 and one of the down-regulated proteins was superoxide dismutase, FeSOD. The characterization of FeSOD shows that it has a specific and important function in the oxidative stress tolerance of Nostoc sp. stain PCC 7120. Since CalA is involved in regulation of both the hydrogen metabolism as well as stress responses these findings indicate that Alr0946 is an important transcription factor in Nostoc sp. strain PCC 7120 active on a global level in the cell. This thesis adds more knowledge concerning maturation and regulation of cyanobacterial hydrogenases which might be useful for future large scale hydrogen.
  •  
2.
  • Anderlund, Magnus F., et al. (author)
  • Redox chemistry of a dimanganese(II,III) complex with an unsymmetric ligand : Water binding, deprotonation and accumulative light-induced oxidation
  • 2006
  • In: European Journal of Inorganic Chemistry. - : Wiley. - 1434-1948 .- 1099-1948 .- 1099-0682. ; :24, s. 5033-5047
  • Journal article (peer-reviewed)abstract
    • A dinuclear manganese complex {[(Mn2L)-L-II,IIII(mu-OAc)(2)]-ClO4} has been synthesised, where L is the dianion of 2-{[bis-(pyrid-2-ylmethyl)amino]methyl}-6-{[(3,5-di-tert-butyl-2- hydroxybenzyl)(pyrid-2-ylmethyl)amino]methyl)-4-methylphenol, an unsymmetric binucleating ligand with two coordinating phenol groups. The two manganese ions, with a Mn-Mn distance of 3.498 angstrom, are bridged by the two bidentate acetate ligands and the 4-methylphenolate group of the ligand, resulting in a N3O3 and N2O4 donor set of Mn-II and Mn-II, respectively. Electrochemically [Mn2(II,III)L(mu-OAc)(2)](+) is reduced to [(Mn2L)-L-II,II(mu-OAc)(2)] at E-1/2(1)=-0.53 V versus Fc(+/0) and oxidised to [(Mn2L)-L-III,III(mu-OAC)(2)](2+) at E-1/2(2)=0.38 V versus Fc(+/0). All three redox states have been characterised by EPR, IR and UV/Vis spectroscopy. Subsequent oxidation of [(Mn2L)-L-II,III(mu-OAc)(2)](2+) [E-1/2(3)=0.75 V vs. Fc(+/0)] in dry acetonitrile results in an unstable primary product with a lifetime of about 100 ins. At high scan rates quasireversible voltammetric behaviour is found for all three electrode processes, with particularly slow electron transfer for the II,III/II,II [k(o)(1) = 0.002 cms(-1) and III,III/II,III [k(o)(2) = 0.005 cms(-1)] couples, which can be rationalised in terms of major distortions of the Mn-II centres. In aqueous media the bridging acetates are replaced by water-derived ligands. Deprotonation of these stabilises higher valence states, and photo-induced oxidation of the manganese complex results in a (Mn2L)-L-IlI,IV complex with oxo or hydroxo bridging ligands, which is further oxidised to an EPR-silent product. These results demonstrate that a larger number of metal-centred oxidations can be compressed in a narrow potential range if build up of charge is avoided by charge-compensating reactions.
  •  
3.
  •  
4.
  •  
5.
  • Berglund, Sigrid, et al. (author)
  • Hydrogen production by a fully de novo enzyme
  • 2024
  • Other publication (other academic/artistic)abstract
    • Molecular catalysts based on abundant elements that function in neutral water represent an essential component of sustainable hydrogen production. Artificial hydrogenases based on protein-inorganic hybrids have emerged as an intriguing class of catalysts for this purpose. We have prepared a novel artificial hydrogenase based on cobaloxime bound to a de novo three alpha-helical protein, α3C, via a pyridyl-based unnatural amino acid. The functionalized de novo protein was characterised by UV-visible, CD, and EPR spectroscopy, as well as MALDI spectrometry, which confirmed the presence and ligation of cobaloxime to the protein. The new de novo protein produced hydrogen under electrochemical, photochemical and reductive chemical conditions in neutral water solution. A change in hydrogen evolution capability of the de novo enzyme compared with native cobaloxime was observed, with turnover numbers around 80% of that of cobaloxime, and hydrogen evolution rates of 40% of that of cobaloxime. We discuss these findings in the context of existing literature, how our study contributes important information about the functionality of cobaloxime as hydrogen evolving catalysts in protein environments, and the feasibility of using de novo proteins for developent into artificial metalloenzymes. Small de novo proteins as enzyme scaffolds have the potential to function as upscalable bioinspired catalysts thanks to their efficient atom economy, and the findings presented here show that these types of novel enzymes are a possible product. 
  •  
6.
  •  
7.
  • Borgström, Magnus, et al. (author)
  • Light induced manganese oxidation and long-lived charge separation in a Mn-2(II,II)-Ru-II (bpy)(3)-acceptor triad
  • 2005
  • In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 127:49, s. 17504-17515
  • Journal article (peer-reviewed)abstract
    • The photoinduced electron-transfer reactions in a Mn-2(II.II)-R-II-NDI triad (1) ([Mn-2(bpmp)(OAc)(2)](+), bpmp = 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methyiphenolate and OAc = acetate, R-II = trisbipyridine ruthenium(II), and NDI = naphthalenediimide) have been studied by time-resolved optical and EPR spectroscopy. Complex 1 is the first synthetically linked electron donor-sensitizer-acceptor triad in which a manganese complex plays the role of the donor. EPR spectroscopy was used to directly demonstrate the light induced formation of both products: the oxidized manganese dimer complex (Mn-2(II.III)) and the reduced naphthalenediimide (NDIcenter dot-) acceptor moieties, while optical spectroscopy was used to follow the kinetic evolution of the [Ru(bpy)(3)](2+) intermediate states and the NDIcenter dot- radical in a wide temperature range. The average lifetime of the NDI- radical is ca. 600 mu s at room temperature, which is at least 2 orders of magnitude longer than that for previously reported triads based on a [Ru(bpy)(3)](2+) photosensitizer. At 140 K, this intramolecular recombination was dramatically slowed, displaying a lifetime of 0.1-1 s, which is comparable to many of the naturally occurring charge-separated states in photosynthetic reaction centra. It was found that the long recombination lifetime could be explained by an unusually large reorganization energy (lambda approximate to 2.0 eV), due to a large inner reorganization of the manganese complex. This makes the recombination reaction strongly activated despite the large driving force (-Delta G degrees = 1.07 eV). Thus, the intrinsic properties of the manganese complex are favorable for creating a long-lived charge separation in the "Marcus normal region" also when the charge separated state energy is high.
  •  
8.
  • Cardona, Tanai, 1983-, et al. (author)
  • Electron transfer protein complexes in the thylakoid membranes of heterocysts from the cyanobacterium Nostoc punctiforme
  • 2009
  • In: Biochimica et Biophysica Acta - Bioenergetics. - : Elsevier. - 0005-2728 .- 1879-2650. ; 1787:4, s. 252-263
  • Journal article (peer-reviewed)abstract
    • Filamentous, heterocystous cyanobacteria are capable of nitrogen fixation and photoautotrophic growth. Nitrogen fixation takes place in heterocysts that differentiate as a result of nitrogen starvation. Heterocysts uphold a microoxic environment to avoid inactivation of nitrogenase, e.g. by downregulation of oxygenic photosynthesis. The ATP and reductant requirement for the nitrogenase reaction is considered to depend on Photosystem I, but little is known about the organization of energy converting membrane proteins in heterocysts. We have investigated the membrane proteome of heterocysts from nitrogen fixing filaments of Nostoc punctiforme sp. PCC 73102, by 2D gel electrophoresis and mass spectrometry. The membrane proteome was found to be dominated by the Photosystem I and ATP-synthase complexes.We could identify asignificant amount of assembled Photosystem II complexes containing the D1, D2, CP43, CP47 and PsbO proteins from these complexes. We could also measure light-driven in vitro electron transfer from Photosystem II in heterocyst thylakoid membranes. We did not find any partially disassembled PhotosystemII complexes lacking the CP43 protein. Several subunits of the NDH-1 complex were also identified. The relative amount of NDH-1M complexes was found to be higher than NDH-1L complexes, which might suggest a role for this complex in cyclic electron transfer in the heterocysts of Nostoc punctiforme.
  •  
9.
  • Cardona, Tanai, 1983-, et al. (author)
  • Excitation energy transfer to Photosystem I in filaments and heterocysts of Nostoc punctiforme
  • 2010
  • In: Biochimica et Biophysica Acta - Bioenergetics. - : Elsevier BV. - 0005-2728 .- 1879-2650. ; 1797:3, s. 425-433
  • Journal article (peer-reviewed)abstract
    • Cyanobacteria adapt to varying light conditions by controlling the amount of excitation energy to the photosystems. On the minute time scale this leads to redirection of the excitation energy, usually referred to as state transitions, which involves movement of the phycobilisomes. We have studied short-term light adaptation in isolated heterocysts and intact filaments from the cyanobacterium Nostoc punctiforme ATCC 29133. In N. punctiforme vegetative cells differentiate into heterocysts where nitrogen fixation takes place. Photosystem II is inactivated in the heterocysts, and the abundancy of Photosystem I is increased relative to the vegetative cells. To study light-induced changes in energy transfer to Photosystem I, pre-illumination was made to dark adapted isolated heterocysts. Illumination wavelengths were chosen to excite Photosystem I (708 nm) or phycobilisomes (560. nm) specifically. In heterocysts that were pre-illuminated at 708. nm, fluorescence from the phycobilisome terminal emitter was observed in the 77 K emission spectrum. However, illumination with 560. nm light caused quenching of the emission from the terminal emitter, with a simultaneous increase in the emission at 750 nm, indicating that the 560 nm pre-illumination caused trimerization of Photosystem I. Excitation spectra showed that 560 nm pre-illumination led to an increase in excitation transfer from the phycobilisomes to trimeric Photosystem I. Illumination at 708 nm did not lead to increased energy transfer from the phycobilisome to Photosystem I compared to dark adapted samples. The measurements were repeated using intact filaments containing vegetative cells, and found to give very similar results as the heterocysts. This demonstrates that molecular events leading to increased excitation energy transfer to Photosystem I, including trimerization, are independent of Photosystem II activity.
  •  
10.
  • Cardona, Tanai, et al. (author)
  • Isolation and characterization of thylakoid membranes from the filamentous cyanobacterium Nostoc punctiforme
  • 2007
  • In: Physiologia Plantarum. - : Wiley. - 0031-9317 .- 1399-3054. ; 131:4, s. 622-634
  • Journal article (peer-reviewed)abstract
    • Nostoc punctiforme strain Pasteur Culture Collection (PCC) 73102, a sequenced filamentous cyanobacterium capable of nitrogen fixation, is used as a model organism for characterization of bioenergetic processes during nitrogen fixation in Nostoc. A protocol for isolating thylakoid membranes was developed to examine the biochem. and biophys. aspects of photosynthetic electron transfer. Thylakoids were isolated from filaments of N. punctiforme by pneumatic pressure-drop lysis. The activity of photosynthetic enzymes in the isolated thylakoids was analyzed by measuring oxygen evolution activity, fluorescence spectroscopy and ESR spectroscopy. Electron transfer was found functional in both PSII and PSI. Electron transfer measurements in PSII, using diphenylcarbazide as electron donor and 2,6-dichlorophenolindophenol as electron acceptor, showed that 80% of the PSII centers were active in water oxidn. in the final membrane prepn. Anal. of the membrane protein complexes was made by 2D gel electrophoresis, and identification of representative proteins was made by mass spectrometry. The ATP synthase, several oligomers of PSI, PSII and the NAD(P)H dehydrogenase (NDH)-1L and NDH-1M complexes, were all found in the gels. Some differences were noted compared with previous results from Synechocystis sp. PCC 6803. Two oligomers of PSII were found, monomeric and dimeric forms, but no CP43-less complexes. Both dimeric and monomeric forms of Cyt b6/f could be obsd. In all, 28 different proteins were identified, of which 25 are transmembrane proteins or membrane associated ones.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 65
Type of publication
journal article (46)
other publication (7)
doctoral thesis (4)
research review (4)
conference paper (2)
book chapter (2)
show more...
show less...
Type of content
peer-reviewed (48)
other academic/artistic (16)
pop. science, debate, etc. (1)
Author/Editor
Magnuson, Ann (58)
Styring, Stenbjörn (29)
Hammarström, Leif (16)
Lomoth, Reiner (13)
Sun, Licheng (12)
Åkermark, Björn (10)
show more...
Huang, Ping (10)
Lindblad, Peter (8)
Stensjö, Karin (7)
Akermark, B. (6)
Högblom, Joakim (6)
Sun, Licheng C. (5)
Berggren, Gustav (5)
Abrahamsson, M. (4)
Anderlund, Magnus F. (4)
Cardona, Tanai, 1983 ... (4)
Johansson, Olof (3)
Eriksson, Lars (3)
Sundström, Villy (3)
Hammarstrom, L (3)
Borgström, Magnus (3)
Mamedov, Fikret (3)
Li, Xin (3)
Martensson, J (3)
Aro, Eva-Mari (3)
Polivka, Tomas (3)
Anderlund, Magnus (3)
Ho, Felix M. (3)
Battchikova, Natalia (3)
Land, Henrik (2)
Magnuson, Anders (2)
Abrahamsson, Maria (2)
Bergquist, Jonas (2)
Abrahamsson, Malin (2)
Berglund, Helena (2)
Agervald, Åsa (2)
Hermansson, Ann (2)
Shi, Wei (2)
Weihe, Högni (2)
Hofer, Anders (2)
Kamwendo, Kitty (2)
Krassen, Henning (2)
Berglund, Sigrid (2)
Feyziyev, Yashar (2)
Pan, Jingxi (2)
Lomoth, R. (2)
Shaikh, Nizamuddin (2)
Tamm, M. (2)
Zhang, Pengpeng (2)
Cardona, Tanai (2)
show less...
University
Uppsala University (53)
Lund University (17)
Stockholm University (11)
Royal Institute of Technology (6)
Umeå University (3)
Örebro University (2)
show more...
Karlstad University (2)
Karolinska Institutet (1)
show less...
Language
English (57)
Undefined language (8)
Research subject (UKÄ/SCB)
Natural sciences (44)
Medical and Health Sciences (5)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view