SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mahadevan Suvrath) "

Sökning: WFRF:(Mahadevan Suvrath)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abolfathi, Bela, et al. (författare)
  • The Fourteenth Data Release of the Sloan Digital Sky Survey : First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment
  • 2018
  • Ingår i: Astrophysical Journal Supplement Series. - : IOP Publishing Ltd. - 0067-0049 .- 1538-4365. ; 235:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014-2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.
  •  
2.
  • Blanton, Michael R., et al. (författare)
  • Sloan Digital Sky Survey IV : Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
  • 2017
  • Ingår i: Astronomical Journal. - : IOP Publishing Ltd. - 0004-6256 .- 1538-3881. ; 154:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and. high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z similar to 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z similar to 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs. and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the. Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.
  •  
3.
  • Lam, Kristine W. F., et al. (författare)
  • It Takes Two Planets in Resonance to Tango around K2-146
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 159:3
  • Tidskriftsartikel (refereegranskat)abstract
    • K2-146 is a cool, 0.358M dwarf that was found to host a mini-Neptune with a 2.67 day period. The planet exhibited strong transit timing variations (TTVs) of greater than 30 minutes, indicative of the presence of an additional object in the system. Here we report the discovery of the previously undetected outer planet in the system, K2-146 c, using additional photometric data. K2-146 c was found to have a grazing transit geometry and a 3.97 day period. The outer planet was only significantly detected in the latter K2 campaigns presumably because of precession of its orbital plane. The TTVs of K2-146 b and c were measured using observations spanning a baseline of almost 1200 days. We found strong anti -correlation in the TTVs, suggesting the two planets are gravitationally interacting. Our TTV and transit model analyses revealed that K2-146 b has a radius of 2.25 0.10 Re and a mass of 5.6 0.7 Me, whereas K2-146 c has a radius of 2.591 Re and a mass of 7.1 0.9 Me. The inner and outer planets likely have moderate eccentricities of e = 0.14 0.07 and 0.16 0.07, respectively. Long-term numerical integrations of the two -planet orbital solution show that it can be dynamically stable for at least 2 Myr. We show that the resonance angles of the planet pair are librating, which may be an indication that K2-146 b and c are in a 3:2 mean motion resonance. The orbital architecture of the system points to a possible convergent migration origin.
  •  
4.
  • Sneden, Christopher, et al. (författare)
  • Chemical Compositions of Red Giant Stars from Habitable Zone Planet Finder Spectroscopy
  • 2021
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 161:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We have used the Habitable Zone Planet Finder (HPF) to gather high-resolution, high signal-to-noise near-infrared spectra of 13 field red horizontal branch (RHB) stars, one open cluster giant, and one very metal-poor halo red giant. The HPF spectra cover the 0.81-1.28 mu m wavelength range of the zyJ bands, partially filling the gap between the optical (0.4-1.0 mu m) and infrared (1.5-2.4 mu m) spectra already available for the program stars. We derive abundances of 17 species from LTE-based computations involving equivalent widths and spectrum syntheses, and estimate abundance corrections for the species that are most affected by departures from LTE in RHB stars. Generally good agreement is found between HPF-based metallicities and abundance ratios and those from the optical and infrared spectral regions. Light element transitions dominate the HPF spectra of these red giants, and HPF data can be used to derive abundances from species with poor or no representation in optical spectra (e.g., C i, P i, S i, K i). Attention is drawn to the HPF abundances in two field solar-metallicity RHB stars of special interest: one with an extreme carbon isotope ratio, and one with a rare, very large lithium content. The latter star is unique in our sample in exhibiting very strong He i 10830 A absorption. The abundances of the open cluster giant concur with those derived from other wavelength regions. Detections of C i and S i in HD 122563 are reported, yielding the lowest metallicity determination of [S/Fe] from more than one multiplet.
  •  
5.
  • Sneden, Christopher, et al. (författare)
  • The Active Chromospheres of Lithium-rich Red Giant Stars
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 940:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We have gathered near-infrared zyJ-band high-resolution spectra of nearly 300 field red giant stars with known lithium abundances in order to survey their He i λ10830 absorption strengths. This transition is an indicator of chromospheric activity and/or mass loss in red giants. The majority of stars in our sample reside in the red clump or red horizontal branch based on their V − J, MV color–magnitude diagram, and Gaia Teff and log(g) values. Most of our target stars are Li-poor in the sense of having normally low Li abundances, defined here as log ò(Li) < 1.25. Over 90% of these Li-poor stars have weak λ10830 features. However, more than half of the 83 Li-rich stars (log ò(Li) > 1.25) have strong λ10830 absorptions. These large λ10830 lines signal excess chromospheric activity in Li-rich stars; there is almost no indication of significant mass loss. The Li-rich giants may also have a higher binary fraction than Li-poor stars, based on their astrometric data. It appears likely that both residence on the horizontal branch and present or past binary interaction play roles in the significant Li–He connection established in this survey.
  •  
6.
  • Souto, Diogo, et al. (författare)
  • Detailed Chemical Abundances for a Benchmark Sample of M Dwarfs from the APOGEE Survey
  • 2022
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 927:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Individual chemical abundances for 14 elements (C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, and Ni) are derived for a sample of M dwarfs using high-resolution, near-infrared H-band spectra from the Sloan Digital Sky Survey-IV/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The quantitative analysis included synthetic spectra computed with 1D LTE plane-parallel MARCS models using the APOGEE Data Release 17 line list to determine chemical abundances. The sample consists of 11 M dwarfs in binary systems with warmer FGK dwarf primaries and 10 measured interferometric angular diameters. To minimize atomic diffusion effects, [X/Fe] ratios are used to compare M dwarfs in binary systems and literature results for their warmer primary stars, indicating good agreement (<0.08 dex) for all studied elements. The mean abundance difference in primaries minus this work's M dwarfs is -0.05 +/- 0.03 dex. It indicates that M dwarfs in binary systems are a reliable way to calibrate empirical relationships. A comparison with abundance, effective temperature, and surface gravity results from the APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) Data Release 16 finds a systematic offset of [M/H], T (eff), log g = +0.21 dex, -50 K, and 0.30 dex, respectively, although ASPCAP [X/Fe] ratios are generally consistent with this study. The metallicities of the M dwarfs cover the range of [Fe/H] = -0.9 to +0.4 and are used to investigate Galactic chemical evolution via trends of [X/Fe] as a function of [Fe/H]. The behavior of the various elemental abundances [X/Fe] versus [Fe/H] agrees well with the corresponding trends derived from warmer FGK dwarfs, demonstrating that the APOGEE spectra can be used to examine Galactic chemical evolution using large samples of selected M dwarfs.
  •  
7.
  • Souto, Diogo, et al. (författare)
  • Stellar Characterization of M Dwarfs from the APOGEE Survey : A Calibrator Sample for M-dwarf Metallicities
  • 2020
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 890:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present spectroscopic determinations of the effective temperatures, surface gravities, and metallicities for 21 M dwarfs observed at high resolution (R similar to 22,500) in the H band as part of the Sloan Digital Sky Survey (SDSS)-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The atmospheric parameters and metallicities are derived from spectral syntheses with 1D LTE plane-parallel MARCS models and the APOGEE atomic/molecular line list, together with up-to-date H2O and FeH molecular line lists. Our sample range in T-eff from similar to 3200 to 3800 K, where 11 stars are in binary systems with a warmer (FGK) primary, while the other 10 M dwarfs have interferometric radii in the literature. We define an M-KS-radius calibration based on our M-dwarf radii derived from the detailed analysis of APOGEE spectra and Gaia DR2 distances, as well as a mass-radius relation using the spectroscopically derived surface gravities. A comparison of the derived radii with interferometric values from the literature finds that the spectroscopic radii are slightly offset toward smaller values, with Delta= -0.01 +/- 0.02 R star/R-circle dot. In addition, the derived M-dwarf masses based upon the radii and surface gravities tend to be slightly smaller (by similar to 5%-10%) than masses derived for M-dwarf members of eclipsing binary systems for a given stellar radius. The metallicities derived for the 11 M dwarfs in binary systems, compared to metallicities obtained for their hotter FGK main-sequence primary stars from the literature, show excellent agreement, with a mean difference of [Fe/H](M dwarf - FGK primary) = +0.04 +/- 0.18 dex, confirming the APOGEE metallicity scale derived here for M dwarfs.
  •  
8.
  • The Seventeenth Data Release of the Sloan Digital Sky Surveys : Complete Release of MaNGA, MaStar, and APOGEE-2 Data
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics (IOP). - 0067-0049 .- 1538-4365. ; 259:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys.
  •  
9.
  • Wanderley, Fabio, et al. (författare)
  • Stellar Characterization and Radius Inflation of Hyades M-dwarf Stars from the APOGEE Survey
  • 2023
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 951:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a spectroscopic analysis of a sample of 48 M-dwarf stars (0.2 M (& ODOT;) < M < 0.6 M (& ODOT;)) from the Hyades open cluster using high-resolution H-band spectra from the Sloan Digital Sky Survey/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. Our methodology adopts spectrum synthesis with LTE MARCS model atmospheres, along with the APOGEE Data Release 17 line list, to determine effective temperatures, surface gravities, metallicities, and projected rotational velocities. The median metallicity obtained for the Hyades M dwarfs is [M/H] = 0.09 & PLUSMN; 0.03 dex, indicating a small internal uncertainty and good agreement with optical results for Hyades red giants. Overall, the median radii are larger than predicted by stellar models by 1.6% & PLUSMN; 2.3% and 2.4% & PLUSMN; 2.3%, relative to a MIST and DARTMOUTH isochrone, respectively. We emphasize, however, that these isochrones are different, and the fractional radius inflation for the fully and partially convective regimes have distinct behaviors depending on the isochrone. Using a MIST isochrone there is no evidence of radius inflation for the fully convective stars, while for the partially convective M dwarfs the radii are inflated by 2.7% & PLUSMN; 2.1%, which is in agreement with predictions from models that include magnetic fields. For the partially convective stars, rapid rotators present on average higher inflation levels than slow rotators. The comparison with SPOTS isochrone models indicates that the derived M-dwarf radii can be explained by accounting for stellar spots in the photosphere of the stars, with 76% of the studied M dwarfs having up to 20% spot coverage, and the most inflated stars with & SIM;20%-40% spot coverage.
  •  
10.
  • Wilson, Robert F., et al. (författare)
  • The Influence of 10 Unique Chemical Elements in Shaping the Distribution of Kepler Planets
  • 2022
  • Ingår i: Astronomical Journal. - : Institute of Physics (IOP). - 0004-6256 .- 1538-3881. ; 163:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemical abundances of planet-hosting stars offer a glimpse into the composition of planet-forming environments. To further understand this connection, we make the first ever measurement of the correlation between planet occurrence and chemical abundances for ten different elements (C, Mg, Al, Si, S, K, Ca, Mn, Fe, and Ni). Leveraging data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and Gaia to derive precise stellar parameters (sigma(R star) approximate to 2.3%, sigma(M star) approximate to 4.5%) for a sample of 1018 Kepler Objects of Interest, we construct a sample of well-vetted Kepler planets with precisely measured radii (sigma(Rp) approximate to 3.4%). After controlling for biases in the Kepler detection pipeline and the selection function of the APOGEE survey, we characterize the relationship between planet occurrence and chemical abundance as the number density of nuclei of each element in a star's photosphere raised to a power, beta. varies by planet type, but is consistent within our uncertainties across all ten elements. For hot planets (P = 1-10 days), an enhancement in any element of 0.1 dex corresponds to an increased occurrence of approximate to 20% for super-Earths (R-p = 1-1.9 R-circle plus) and approximate to 60% for sub-Neptunes (R-p = 1.9-4 R-circle plus). Trends are weaker for warm (P = 10-100 days) planets of all sizes and for all elements, with the potential exception of sub-Saturns (R-p = 4-8 R.). Finally, we conclude this work with a caution to interpreting trends between planet occurrence and stellar age due to degeneracies caused by Galactic chemical evolution and make predictions for planet occurrence rates in nearby open clusters to facilitate demographics studies of young planetary systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy