SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mahajan Anubha) ;lar1:(umu)"

Sökning: WFRF:(Mahajan Anubha) > Umeå universitet

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dawed, Adem Y., et al. (författare)
  • Variation in the plasma membrane monoamine transporter (PMAT) (encoded by SLC29A4) and organic cation transporter 1 (OCT1) (encoded by SLC22A1) and gastrointestinal intolerance to metformin in type 2 diabetes : An IMI direct study
  • 2019
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 42:6, s. 1027-1033
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE Gastrointestinal adverse effects occur in 20–30% of patients with metformin-treated type 2 diabetes, leading to premature discontinuation in 5–10% of the cases. Gastrointestinal intolerance may reflect localized high concentrations of metformin in the gut. We hypothesized that reduced transport of metformin via the plasma membrane monoamine transporter (PMAT) and organic cation transporter 1 (OCT1) could increase the risk of severe gastrointestinal adverse effects. RESEARCH DESIGN AND METHODS The study included 286 severe metformin-intolerant and 1,128 metformin-tolerant individuals from the IMI DIRECT (Innovative Medicines Initiative: DIabetes REsearCh on patient straTification) consortium. We assessed the association of patient characteristics, concomitant medication, and the burden of mutations in the SLC29A4 and SLC22A1 genes on odds of intolerance. RESULTS Women (P < 0.001) and older people (P < 0.001) were more likely to develop metformin intolerance. Concomitant use of transporter-inhibiting drugs increased the odds of intolerance (odds ratio [OR] 1.72, P < 0.001). In an adjusted logistic regression model, the G allele at rs3889348 (SLC29A4) was associated with gastrointestinal intolerance (OR 1.34, P = 0.005). rs3889348 is the top cis-expression quantitative trait locus for SLC29A4 in gut tissue where carriers of the G allele had reduced expression. Homozygous carriers of the G allele treated with transporter-inhibiting drugs had more than three times higher odds of intolerance compared with carriers of no G allele and not treated with inhibiting drugs (OR 3.23, P < 0.001). Use of a genetic risk score derived from rs3889348 and SLC22A1 variants found that the odds of intolerance were more than twice as high in individuals who carry three or more risk alleles compared with those carrying none (OR 2.15, P = 0.01). CONCLUSIONS These results suggest that intestinal metformin transporters and concomitant medications play an important role in the gastrointestinal adverse effects of metformin.
  •  
2.
  • Deshmukh, Harshal A., et al. (författare)
  • Genome-Wide Association Analysis of Pancreatic Beta-Cell Glucose Sensitivity
  • 2021
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 106:1, s. 80-90
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: Pancreatic beta-cell glucose sensitivity is the slope of the plasma glucose-insulin secretion relationship and is a key predictor of deteriorating glucose tolerance and development of type 2 diabetes. However, there are no large-scale studies looking at the genetic determinants of beta-cell glucose sensitivity. OBJECTIVE: To understand the genetic determinants of pancreatic beta-cell glucose sensitivity using genome-wide meta-analysis and candidate gene studies. DESIGN: We performed a genome-wide meta-analysis for beta-cell glucose sensitivity in subjects with type 2 diabetes and nondiabetic subjects from 6 independent cohorts (n = 5706). Beta-cell glucose sensitivity was calculated from mixed meal and oral glucose tolerance tests, and its associations between known glycemia-related single nucleotide polymorphisms (SNPs) and genome-wide association study (GWAS) SNPs were estimated using linear regression models. RESULTS: Beta-cell glucose sensitivity was moderately heritable (h2 ranged from 34% to 55%) using SNP and family-based analyses. GWAS meta-analysis identified multiple correlated SNPs in the CDKAL1 gene and GIPR-QPCTL gene loci that reached genome-wide significance, with SNP rs2238691 in GIPR-QPCTL (P value = 2.64 × 10-9) and rs9368219 in the CDKAL1 (P value = 3.15 × 10-9) showing the strongest association with beta-cell glucose sensitivity. These loci surpassed genome-wide significance when the GWAS meta-analysis was repeated after exclusion of the diabetic subjects. After correction for multiple testing, glycemia-associated SNPs in or near the HHEX and IGF2B2 loci were also associated with beta-cell glucose sensitivity. CONCLUSION: We show that, variation at the GIPR-QPCTL and CDKAL1 loci are key determinants of pancreatic beta-cell glucose sensitivity.
  •  
3.
  • Flannick, Jason, et al. (författare)
  • Data Descriptor : Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
  •  
4.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
5.
  • Gaulton, Kyle J, et al. (författare)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:12, s. 1415-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
6.
  • Gudmundsdottir, Valborg, et al. (författare)
  • Whole blood co-expression modules associate with metabolic traits and type 2 diabetes : an IMI-DIRECT study
  • 2020
  • Ingår i: Genome Medicine. - : BioMed Central. - 1756-994X .- 1756-994X. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The rising prevalence of type 2 diabetes (T2D) poses a major global challenge. It remains unresolved to what extent transcriptomic signatures of metabolic dysregulation and T2D can be observed in easily accessible tissues such as blood. Additionally, large-scale human studies are required to further our understanding of the putative inflammatory component of insulin resistance and T2D. Here we used transcriptomics data from individuals with (n = 789) and without (n = 2127) T2D from the IMI-DIRECT cohorts to describe the co-expression structure of whole blood that mainly reflects processes and cell types of the immune system, and how it relates to metabolically relevant clinical traits and T2D.Methods: Clusters of co-expressed genes were identified in the non-diabetic IMI-DIRECT cohort and evaluated with regard to stability, as well as preservation and rewiring in the cohort of individuals with T2D. We performed functional and immune cell signature enrichment analyses, and a genome-wide association study to describe the genetic regulation of the modules. Phenotypic and trans-omics associations of the transcriptomic modules were investigated across both IMI-DIRECT cohorts.Results: We identified 55 whole blood co-expression modules, some of which clustered in larger super-modules. We identified a large number of associations between these transcriptomic modules and measures of insulin action and glucose tolerance. Some of the metabolically linked modules reflect neutrophil-lymphocyte ratio in blood while others are independent of white blood cell estimates, including a module of genes encoding neutrophil granule proteins with antibacterial properties for which the strongest associations with clinical traits and T2D status were observed. Through the integration of genetic and multi-omics data, we provide a holistic view of the regulation and molecular context of whole blood transcriptomic modules. We furthermore identified an overlap between genetic signals for T2D and co-expression modules involved in type II interferon signaling.Conclusions: Our results offer a large-scale map of whole blood transcriptomic modules in the context of metabolic disease and point to novel biological candidates for future studies related to T2D.
  •  
7.
  • Ji, Yingjie, et al. (författare)
  • Genome-wide and abdominal MRI data provide evidence that a genetically determined favorable adiposity phenotype is characterized by lower ectopic liver fat and lower risk of type 2 diabetes, heart disease, and hypertension
  • 2019
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 68:1, s. 207-219
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent genetic studies have identified alleles associated with opposite effects on adiposity and risk of type 2 diabetes. We aimed to identify more of these variants and test the hypothesis that such favorable adiposity alleles are associated with higher subcutaneous fat and lower ectopic fat. We combined MRI data with genome-wide association studies of body fat percentage (%) and metabolic traits. We report 14 alleles, including 7 newly characterized alleles, associated with higher adiposity but a favorable metabolic profile. Consistent with previous studies, individuals carrying more favorable adiposity alleles had higher body fat % and higher BMI but lower risk of type 2 diabetes, heart disease, and hypertension. These individuals also had higher subcutaneous fat but lower liver fat and a lower visceral-to-subcutaneous adipose tissue ratio. Individual alleles associated with higher body fat % but lower liver fat and lower risk of type 2 diabetes included those in PPARG, GRB14, and IRS1, whereas the allele in ANKRD55 was paradoxically associated with higher visceral fat but lower risk of type 2 diabetes. Most identified favorable adiposity alleles are associated with higher subcutaneous and lower liver fat, a mechanism consistent with the beneficial effects of storing excess triglycerides in metabolically low-risk depots.
  •  
8.
  • Justice, Anne E., et al. (författare)
  • Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution
  • 2019
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:3, s. 452-469
  • Tidskriftsartikel (refereegranskat)abstract
    • Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF >= 5%) and nine low-frequency or rare (MAF < 5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
  •  
9.
  • Kilpeläinen, Tuomas O, et al. (författare)
  • Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.
  •  
10.
  • Koivula, Robert W., et al. (författare)
  • Discovery of biomarkers for glycaemic deterioration before and after the onset of type 2 diabetes : descriptive characteristics of the epidemiological studies within the IMI DIRECT Consortium
  • 2019
  • Ingår i: Diabetologia. - : Springer. - 0012-186X .- 1432-0428. ; 62:9, s. 1601-1615
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Here, we describe the characteristics of the Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) epidemiological cohorts at baseline and follow-up examinations (18, 36 and 48 months of follow-up).Methods: From a sampling frame of 24,682 adults of European ancestry enrolled in population-based cohorts across Europe, participants at varying risk of glycaemic deterioration were identified using a risk prediction algorithm (based on age, BMI, waist circumference, use of antihypertensive medication, smoking status and parental history of type 2 diabetes) and enrolled into a prospective cohort study (n = 2127) (cohort 1, prediabetes risk). We also recruited people from clinical registries with type 2 diabetes diagnosed 6-24 months previously (n = 789) into a second cohort study (cohort 2, diabetes). Follow-up examinations took place at similar to 18 months (both cohorts) and at similar to 48 months (cohort 1) or similar to 36 months (cohort 2) after baseline examinations. The cohorts were studied in parallel using matched protocols across seven clinical centres in northern Europe.Results: Using ADA 2011 glycaemic categories, 33% (n = 693) of cohort 1 (prediabetes risk) had normal glucose regulation and 67% (n = 1419) had impaired glucose regulation. Seventy-six per cent of participants in cohort 1 was male. Cohort 1 participants had the following characteristics (mean +/- SD) at baseline: age 62 (6.2) years; BMI 27.9 (4.0) kg/m(2); fasting glucose 5.7 (0.6) mmol/l; 2 h glucose 5.9 (1.6) mmol/l. At the final follow-up examination the participants' clinical characteristics were as follows: fasting glucose 6.0 (0.6) mmol/l; 2 h OGTT glucose 6.5 (2.0) mmol/l. In cohort 2 (diabetes), 66% (n = 517) were treated by lifestyle modification and 34% (n = 272) were treated with metformin plus lifestyle modification at enrolment. Fifty-eight per cent of participants in cohort 2 was male. Cohort 2 participants had the following characteristics at baseline: age 62 (8.1) years; BMI 30.5 (5.0) kg/m(2); fasting glucose 7.2 (1.4) mmol/l; 2 h glucose 8.6 (2.8) mmol/l. At the final follow-up examination, the participants' clinical characteristics were as follows: fasting glucose 7.9 (2.0) mmol/l; 2 h mixed-meal tolerance test glucose 9.9 (3.4) mmol/l.Conclusions/interpretation: The IMI DIRECT cohorts are intensely characterised, with a wide-variety of metabolically relevant measures assessed prospectively. We anticipate that the cohorts, made available through managed access, will provide a powerful resource for biomarker discovery, multivariate aetiological analyses and reclassification of patients for the prevention and treatment of type 2 diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25
Typ av publikation
tidskriftsartikel (25)
Typ av innehåll
refereegranskat (25)
Författare/redaktör
Mahajan, Anubha (25)
McCarthy, Mark I (23)
Franks, Paul W. (19)
Wareham, Nicholas J. (19)
Laakso, Markku (19)
Salomaa, Veikko (18)
visa fler...
Lind, Lars (18)
Langenberg, Claudia (18)
Loos, Ruth J F (18)
Esko, Tõnu (18)
Deloukas, Panos (17)
Pedersen, Oluf (17)
Hansen, Torben (17)
Boehnke, Michael (17)
Scott, Robert A (17)
Lindgren, Cecilia M. (17)
Morris, Andrew P. (17)
Mohlke, Karen L (16)
Tuomilehto, Jaakko (16)
Palmer, Colin N. A. (16)
Grarup, Niels (15)
Rauramaa, Rainer (15)
Lu, Yingchang (15)
Kuusisto, Johanna (14)
Linneberg, Allan (14)
Luan, Jian'an (14)
Metspalu, Andres (14)
Karpe, Fredrik (14)
Morris, Andrew D (14)
Wood, Andrew R (14)
Frayling, Timothy M (14)
Jackson, Anne U. (14)
Grallert, Harald (14)
Perola, Markus (13)
Saleheen, Danish (13)
Peters, Annette (13)
Strauch, Konstantin (13)
Hattersley, Andrew T (13)
Walker, Mark (13)
Hayward, Caroline (13)
Collins, Francis S. (13)
Mihailov, Evelin (13)
Groop, Leif (12)
Barroso, Ines (12)
Froguel, Philippe (12)
Zeggini, Eleftheria (12)
Willer, Cristen J (12)
Lakka, Timo A (12)
Zhang, Weihua (12)
Perry, John R.B. (12)
visa färre...
Lärosäte
Lunds universitet (24)
Uppsala universitet (19)
Karolinska Institutet (9)
Göteborgs universitet (4)
Kungliga Tekniska Högskolan (2)
visa fler...
Stockholms universitet (2)
Högskolan Dalarna (2)
visa färre...
Språk
Engelska (25)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (25)
Naturvetenskap (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy