SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mann Graham J.) ;lar1:(lu)"

Sökning: WFRF:(Mann Graham J.) > Lunds universitet

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
2.
  •  
3.
  • Artomov, Mykyta, et al. (författare)
  • Rare variant, gene-based association study of hereditary melanoma using whole-exome sequencing
  • 2017
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 109:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Extraordinary progress has been made in our understanding of common variants in many diseases, including melanoma. Because the contribution of rare coding variants is not as well characterized, we performed an exome-wide, gene-based association study of familial cutaneous melanoma (CM) and ocular melanoma (OM). Methods: Using 11 990 jointly processed individual DNA samples, whole-exome sequencing was performed, followed by largescale joint variant calling using GATK (Genome Analysis ToolKit). PLINK/SEQ was used for statistical analysis of genetic variation. Fourmodels were used to estimate the association among different types of variants. In vitro functional validation was performed using three humanmelanoma cell lines in 2D and 3D proliferation assays. In vivo tumor growth was assessed using xenografts of humanmelanoma A375melanoma cells in nudemice (eightmice per group). All statistical tests were two-sided. Results: Strong signals were detected for CDKN2A (Pmin = 6.16×10-8) in the CM cohort (n=273) and BAP1 (Pmin = 3.83×10-6) in the OM (n=99) cohort. Eleven genes that exhibited borderline association (P < 10-4) were independently validated using The Cancer Genome Atlas melanoma cohort (379 CM, 47 OM) and a matched set of 3563 European controls with CDKN2A (P = .009), BAP1 (P = .03), and EBF3 (P = 4.75×10-4), a candidate risk locus, all showing evidence of replication. EBF3 was then evaluated using germline data from a set of 132 familial melanoma cases and 4769 controls of UK origin (joint P = 1.37×10-5). Somatically, loss of EBF3 expression correlated with progression, poorer outcome, and high MITF tumors. Functionally, induction of EBF3 in melanoma cells reduced cell growth in vitro, retarded tumor formation in vivo, and reduced MITF levels. Conclusions: The results of this large rare variant germline association study further define the mutational landscape of hereditary melanoma and implicate EBF3 as a possible CM predisposition gene.
  •  
4.
  • Newell, Felicity, et al. (författare)
  • Whole-genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of key drivers and therapeutic targets in mucosal melanoma is limited due to the paucity of comprehensive mutation data on this rare tumor type. To better understand the genomic landscape of mucosal melanoma, here we describe whole genome sequencing analysis of 67 tumors and validation of driver gene mutations by exome sequencing of 45 tumors. Tumors have a low point mutation burden and high numbers of structural variants, including recurrent structural rearrangements targeting TERT, CDK4 and MDM2. Significantly mutated genes are NRAS, BRAF, NF1, KIT, SF3B1, TP53, SPRED1, ATRX, HLA-A and CHD8. SF3B1 mutations occur more commonly in female genital and anorectal melanomas and CTNNB1 mutations implicate a role for WNT signaling defects in the genesis of some mucosal melanomas. TERT aberrations and ATRX mutations are associated with alterations in telomere length. Mutation profiles of the majority of mucosal melanomas suggest potential susceptibility to CDK4/6 and/or MEK inhibitors.
  •  
5.
  • Aoude, Lauren G, et al. (författare)
  • Nonsense Mutations in the Shelterin Complex Genes ACD and TERF2IP in Familial Melanoma.
  • 2015
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 1460-2105 .- 0027-8874. ; 107:2, s. 408-408
  • Tidskriftsartikel (refereegranskat)abstract
    • The shelterin complex protects chromosomal ends by regulating how the telomerase complex interacts with telomeres. Following the recent finding in familial melanoma of inactivating germline mutations in POT1, encoding a member of the shelterin complex, we searched for mutations in the other five components of the shelterin complex in melanoma families.
  •  
6.
  • Brown, Kevin M., et al. (författare)
  • Common sequence variants on 20q11.22 confer melanoma susceptibility
  • 2008
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 40:7, s. 838-840
  • Tidskriftsartikel (refereegranskat)abstract
    • We conducted a genome-wide association pooling study for cutaneous melanoma and performed validation in samples totaling 2,019 cases and 2,105 controls. Using pooling, we identified a new melanoma risk locus on chromosome 20 (rs910873 and rs1885120), with replication in two further samples (combined P < 1 x 10(-15)). The per allele odds ratio was 1.75 (1.53, 2.01), with evidence for stronger association in early-onset cases.
  •  
7.
  • Barrett, Jennifer H., et al. (författare)
  • Genome-wide association study identifies three new melanoma susceptibility loci
  • 2011
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:11, s. 1108-1113
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a genome-wide association study for melanoma that was conducted by the GenoMEL Consortium. Our discovery phase included 2,981 individuals with melanoma and 1,982 study-specific control individuals of European ancestry, as well as an additional 6,426 control subjects from French or British populations, all of whom were genotyped for 317,000 or 610,000 single-nucleotide polymorphisms (SNPs). Our analysis replicated previously known melanoma susceptibility loci. Seven new regions with at least one SNP with P < 10(-5) and further local imputed or genotyped support were selected for replication using two other genome-wide studies (from Australia and Texas, USA). Additional replication came from case-control series from the UK and The Netherlands. Variants at three of the seven loci replicated at P < 10(-3): an SNP in ATM (rs1801516, overall P = 3.4 x 10(-9)), an SNP in MX2 (rs45430, P = 2.9 x 10-9) and an SNP adjacent to CASP8 (rs13016963, P = 8.6 x 10(-10)). A fourth locus near CCND1 remains of potential interest, showing suggestive but inconclusive evidence of replication (rs1485993, overall P = 4.6 x 10(-7) under a fixed-effects model and P = 1.2 x 10(-3) under a random-effects model). These newly associated variants showed no association with nevus or pigmentation phenotypes in a large British case-control series.
  •  
8.
  • Lacson, John Charles A., et al. (författare)
  • Birth cohort-specific trends of sun-related behaviors among individuals from an international consortium of melanoma-prone families
  • 2021
  • Ingår i: BMC Public Health. - : Springer Science and Business Media LLC. - 1471-2458. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Individuals from melanoma-prone families have similar or reduced sun-protective behaviors compared to the general population. Studies on trends in sun-related behaviors have been temporally and geographically limited. Methods: Individuals from an international consortium of melanoma-prone families (GenoMEL) were retrospectively asked about sunscreen use, sun exposure (time spent outside), sunburns, and sunbed use at several timepoints over their lifetime. Generalized linear mixed models were used to examine the association between these outcomes and birth cohort defined by decade spans, after adjusting for covariates. Results: A total of 2407 participants from 547 families across 17 centers were analyzed. Sunscreen use increased across subsequent birth cohorts, and although the likelihood of sunburns increased until the 1950s birth cohort, it decreased thereafter. Average sun exposure did not change across the birth cohorts, and the likelihood of sunbed use increased in more recent birth cohorts. We generally did not find any differences in sun-related behavior when comparing melanoma cases to non-cases. Melanoma cases had increased sunscreen use, decreased sun exposure, and decreased odds of sunburn and sunbed use after melanoma diagnosis compared to before diagnosis. Conclusions: Although sunscreen use has increased and the likelihood of sunburns has decreased in more recent birth cohorts, individuals in melanoma-prone families have not reduced their overall sun exposure and had an increased likelihood of sunbed use in more recent birth cohorts. These observations demonstrate partial improvements in melanoma prevention and suggest that additional intervention strategies may be needed to achieve optimal sun-protective behavior in melanoma-prone families.
  •  
9.
  • MacGregor, Stuart, et al. (författare)
  • Genome-wide association study identifies a new melanoma susceptibility locus at 1q21.3
  • 2011
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:11, s. 1114-1118
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a genome-wide association study of melanoma in a discovery cohort of 2,168 Australian individuals with melanoma and 4,387 control individuals. In this discovery phase, we confirm several previously characterized melanoma-associated loci at MC1R, ASIP and MTAP-CDKN2A. We selected variants at nine loci for replication in three independent case-control studies (Europe: 2,804 subjects with melanoma, 7,618 control subjects; United States 1: 1,804 subjects with melanoma, 1,026 control subjects; United States 2: 585 subjects with melanoma, 6,500 control subjects). The combined meta-analysis of all case-control studies identified a new susceptibility locus at 1q21.3 (rs7412746, P = 9.0 x 10(-11), OR in combined replication cohorts of 0.89 (95% CI 0.85-0.95)). We also show evidence suggesting that melanoma associates with 1q42.12 (rs3219090, P = 9.3 x 10(-8)). The associated variants at the 1q21.3 locus span a region with ten genes, and plausible candidate genes for melanoma susceptibility include ARNT and SETDB1. Variants at the 1q21.3 locus do not seem to be associated with human pigmentation or measures of nevus density.
  •  
10.
  • Taylor, Nicholas J, et al. (författare)
  • Estimating CDKN2A mutation carrier probability among global familial melanoma cases using GenoMELPREDICT
  • 2019
  • Ingår i: Journal of the American Academy of Dermatology. - : Elsevier BV. - 0190-9622 .- 1097-6787. ; 81:2, s. 386-394
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Although rare in the general population, highly penetrant germline mutations in CDKN2A are responsible for 5-40% of melanoma cases reported in melanoma-prone families. We sought to determine whether MELPREDICT was generalizable to a global series of melanoma families and whether performance improvements can be achieved.METHODS: 2,116 familial melanoma cases were ascertained by the international GenoMEL Consortium. We recapitulated the MELPREDICT model within our data (GenoMELPREDICT) to assess performance improvements by adding phenotypic risk factors and history of pancreatic cancer. We report areas under the curve (AUC) with 95% confidence intervals (CI) along with net reclassification indices (NRI) as performance metrics.RESULTS: MELPREDICT performed well (AUC=0.752; 95%CI: 0.730, 0.775), and GenoMELPREDICT performance was similar (AUC=0.748; 95% CI: 0.726, 0.771). Adding a reported history of pancreatic cancer yielded discriminatory improvement (p<0.0001) in GenoMELPREDICT (AUC=0.772; 95%CI: 0.750, 0.793; NRI=0.40). Including phenotypic risk factors did not improve performance.CONCLUSION: The MELPREDICT model functioned well in a global dataset of familial melanoma cases. Adding pancreatic cancer history improved model prediction. GenoMELPREDICT is a simple tool for predicting CDKN2A mutational status among melanoma patients from melanoma-prone families and can aid in counselling these patients towards genetic testing or cancer risk counselling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy