SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marcon Alessandro) ;pers:(Ricceri Fulvio)"

Sökning: WFRF:(Marcon Alessandro) > Ricceri Fulvio

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersen, Zorana J., et al. (författare)
  • Long-term Exposure to Ambient Air Pollution and Incidence of Brain Tumor : the European Study of Cohorts for Air Pollution Effects (ESCAPE)
  • 2018
  • Ingår i: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 20:3, s. 420-432
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Epidemiological evidence on the association between ambient air pollution and brain tumor risk is sparse and inconsistent.Methods: In 12 cohorts from 6 European countries, individual estimates of annual mean air pollution levels at the baseline residence were estimated by standardized land-use regression models developed within the ESCAPE and TRANSPHORM projects: particulate matter (PM) ≤2.5, ≤10, and 2.5–10 μm in diameter (PM2.5, PM10, and PMcoarse), PM2.5 absorbance, nitrogen oxides (NO2 and NOx) and elemental composition of PM. We estimated cohort-specific associations of air pollutant concentrations and traffic intensity with total, malignant, and nonmalignant brain tumor, in separate Cox regression models, adjusting for risk factors, and pooled cohort-specific estimates using random-effects meta-analyses.Results: Of 282194 subjects from 12 cohorts, 466 developed malignant brain tumors during 12 years of follow-up. Six of the cohorts also had data on nonmalignant brain tumor, where among 106786 subjects, 366 developed brain tumor: 176 nonmalignant and 190 malignant. We found a positive, statistically nonsignificant association between malignant brain tumor and PM2.5 absorbance (hazard ratio and 95% CI: 1.67; 0.89–3.14 per 10–5/m3), and weak positive or null associations with the other pollutants. Hazard ratio for PM2.5 absorbance (1.01; 0.38–2.71 per 10–5/m3) and all other pollutants were lower for nonmalignant than for malignant brain tumors.Conclusion: We found suggestive evidence of an association between long-term exposure to PM2.5 absorbance indicating traffic-related air pollution and malignant brain tumors, and no association with overall or nonmalignant brain tumors.
  •  
2.
  • Andersen, Zorana J., et al. (författare)
  • Long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in 15 European cohorts within the ESCAPE project
  • 2017
  • Ingår i: Journal of Environmental Health Perspectives. - Research triangle park : US department of health. - 0091-6765 .- 1552-9924. ; 125:10
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Epidemiological evidence on the association between ambient air pollution and breast cancer risk is inconsistent.OBJECTIVE: We examined the association between long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in European women.METHODS: In 15 cohorts from nine European countries, individual estimates of air pollution levels at the residence were estimated by standardized land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE) and Transport related Air Pollution and Health impacts – Integrated Methodologies for Assessing Particulate Matter (TRANSPHORM) projects: particulate matter (PM) ≤2.5μm, ≤10μm, and 2.5–10μm in diameter (PM2.5, PM10, and PMcoarse, respectively); PM2.5 absorbance; nitrogen oxides (NO2 and NOx); traffic intensity; and elemental composition of PM. We estimated cohort-specific associations between breast cancer and air pollutants using Cox regression models, adjusting for major lifestyle risk factors, and pooled cohort-specific estimates using random-effects meta-analyses.RESULTS: Of 74,750 postmenopausal women included in the study, 3,612 developed breast cancer during 991,353 person-years of follow-up. We found positive and statistically insignificant associations between breast cancer and PM2.5 {hazard ratio (HR)=1.08 [95% confidence interval (CI): 0.77, 1.51] per 5 μg/m(3)}, PM10 [1.07 (95% CI: 0.89, 1.30) per 10 μg/m(3)], PMcoarse[1.20 (95% CI: 0.96, 1.49 per 5 μg/m(3)], and NO(2) [1.02 (95% CI: 0.98, 1.07 per 10 μg/m(3)], and a statistically significant association with NOx [1.04 (95% CI: 1.00, 1.08) per 20 μg/m(3), p=0.04].CONCLUSIONS: We found suggestive evidence of an association between ambient air pollution and incidence of postmenopausal breast cancer in European women.
  •  
3.
  • Beelen, Rob, et al. (författare)
  • Long-term Exposure to Air Pollution and Cardiovascular Mortality An Analysis of 22 European Cohorts
  • 2014
  • Ingår i: Epidemiology. - : Lippincott Williams & Wilkins. - 1044-3983 .- 1531-5487. ; 25:3, s. 368-378
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Air pollution has been associated with cardiovascular mortality, but it remains unclear as to whether specific pollutants are related to specific cardiovascular causes of death. Within the multicenter European Study of Cohorts for Air Pollution Effects (ESCAPE), we investigated the associations of long-term exposure to several air pollutants with all cardiovascular disease (CVD) mortality, as well as with specific cardiovascular causes of death. Methods: Data from 22 European cohort studies were used. Using a standardized protocol, study area-specific air pollution exposure at the residential address was characterized as annual average concentrations of the following: nitrogen oxides (NO2 and NOx); particles with diameters of less than 2.5 mu m (PM2.5), less than 10 mu m (PM10), and 10 mu m to 2.5 mu m (PMcoarse); PM2.5 absorbance estimated by land-use regression models; and traffic indicators. We applied cohort-specific Cox proportional hazards models using a standardized protocol. Random-effects meta-analysis was used to obtain pooled effect estimates. Results: The total study population consisted of 367,383 participants, with 9994 deaths from CVD (including 4,992 from ischemic heart disease, 2264 from myocardial infarction, and 2484 from cerebrovascular disease). All hazard ratios were approximately 1.0, except for particle mass and cerebrovascular disease mortality; for PM2.5, the hazard ratio was 1.21 (95% confidence interval = 0.87-1.69) per 5 mu g/m(3) and for PM10, 1.22 (0.91-1.63) per 10 mu g/m(3). Conclusion: In a joint analysis of data from 22 European cohorts, most hazard ratios for the association of air pollutants with mortality from overall CVD and with specific CVDs were approximately 1.0, with the exception of particulate mass and cerebrovascular disease mortality for which there was suggestive evidence for an association.
  •  
4.
  • Beelen, Rob, et al. (författare)
  • Natural-Cause Mortality and Long-Term Exposure to Particle Components : An Analysis of 19 European Cohorts within the Multi-Center ESCAPE Project
  • 2015
  • Ingår i: Journal of Environmental Health Perspectives. - : Environmental Health Perspectives. - 0091-6765 .- 1552-9924. ; 123:6, s. 525-533
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Studies have shown associations between mortality and long-term exposure to particulate matter air pollution. Few cohort studies have estimated the effects of the elemental composition of particulate matter on mortality. Objectives: Our aim was to study the association between natural-cause mortality and long-term exposure to elemental components of particulate matter. Methods: Mortality and confounder data from 19 European cohort studies were used. Residential exposure to eight a priori-selected components of particulate matter ( PM) was characterized following a strictly standardized protocol. Annual average concentrations of copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc within PM size fractions <= 2.5 mu m (PM2.5) and <= 10 mu m (PM10) were estimated using land-use regression models. Cohort-specific statistical analyses of the associations between mortality and air pollution were conducted using Cox proportional hazards models using a common protocol followed by meta-analysis. Results: The total study population consisted of 291,816 participants, of whom 25,466 died from a natural cause during follow-up (average time of follow-up, 14.3 years). Hazard ratios were positive for almost all elements and statistically significant for PM2.5 sulfur (1.14; 95% CI: 1.06, 1.23 per 200ng/m(3)). In a two-pollutant model, the association with PM2.5 sulfur was robust to adjustment for PM2.5 mass, whereas the association with PM2.5 mass was reduced. Conclusions: Long-term exposure to PM2.5 sulfur was associated with natural-cause mortality. This association was robust to adjustment for other pollutants and PM2.5.
  •  
5.
  • Dimakopoulou, Konstantina, et al. (författare)
  • Air Pollution and Nonmalignant Respiratory Mortality in 16 Cohorts within the ESCAPE Project
  • 2014
  • Ingår i: American Journal of Respiratory and Critical Care Medicine. - : American Thoracic Society. - 1073-449X .- 1535-4970. ; 189:6, s. 684-696
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Prospective cohort studies have shown that chronic exposure to particulate matter and traffic-related air pollution is associated with reduced survival. However, the effects on nonmalignant respiratory mortality are less studied, and the data reported are less consistent. Objectives: We have investigated the relationship of long-term exposure to air pollution and nonmalignant respiratory mortality in 16 cohorts with individual level data within the multicenter European Study of Cohorts for Air Pollution Effects (ESCAPE). Methods: Data from 16 ongoing cohort studies from Europe were used. The total number of subjects was 307,553. There were 1,559 respiratory deaths during follow-up. Measurements and Main Results: Air pollution exposure was estimated by land use regression models at the baseline residential addresses of study participants and traffic-proximity variables were derived from geographical databases following a standardized procedure within, the ESCAPE study. Cohort-specific hazard ratios obtained by Cox proportional hazard models from standardized individual cohort analyses were combined using metaanalyses. We found no significant associations between air pollution exposure and nonmalignant respiratory mortality. Most hazard ratios were slightly below unity, with the exception of the traffic-proximity indicators. Conclusions: In this study of 16 cohorts, there was no-association between air pollution exposure and nonmalignant respiratory mortality.
  •  
6.
  • Nagel, Gabriele, et al. (författare)
  • Air pollution and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts for Air Pollution Effects (ESCAPE)
  • 2018
  • Ingår i: International Journal of Cancer. - : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 143:7, s. 1632-1643
  • Tidskriftsartikel (refereegranskat)abstract
    • Air pollution has been classified as carcinogenic to humans. However, to date little is known about the relevance for cancersof the stomach and upper aerodigestive tract (UADT). We investigated the association of long-term exposure to ambient airpollution with incidence of gastric and UADT cancer in 11 European cohorts. Air pollution exposure was assigned by land-useregression models for particulate matter (PM) below 10mm (PM10), below 2.5mm (PM2.5), between 2.5 and 10mm (PMcoarse),PM2.5absorbance and nitrogen oxides (NO2and NOX) as well as approximated by traffic indicators. Cox regression modelswith adjustment for potential confounders were used for cohort-specific analyses. Combined estimates were determined withrandom effects meta-analyses. During average follow-up of 14.1 years of 305,551 individuals, 744 incident cases of gastriccancer and 933 of UADT cancer occurred. The hazard ratio for an increase of 5mg/m3of PM2.5was 1.38 (95% CI 0.99; 1.92)for gastric and 1.05 (95% CI 0.62; 1.77) for UADT cancers. No associations were found for any of the other exposures consid-ered. Adjustment for additional confounders and restriction to study participants with stable addresses did not influencemarkedly the effect estimate for PM2.5and gastric cancer. Higher estimated risks of gastric cancer associated with PM2.5wasfound in men (HR 1.98 [1.30; 3.01]) as compared to women (HR 0.85 [0.5; 1.45]). This large multicentre cohort study showsan association between long-term exposure to PM2.5and gastric cancer, but not UADT cancers, suggesting that air pollutionmay contribute to gastric cancer risk.
  •  
7.
  • Pedersen, Marie, et al. (författare)
  • Is There an Association Between Ambient Air Pollution and Bladder Cancer Incidence? Analysis of 15 European Cohorts
  • 2018
  • Ingår i: European Urology Focus. - : Elsevier BV. - 2405-4569. ; 4:1, s. 113-120
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Ambient air pollution contains low concentrations of carcinogens implicated in the etiology of urinary bladder cancer (BC). Little is known about whether exposure to air pollution influences BC in the general population. Objective: To evaluate the association between long-term exposure to ambient air pollution and BC incidence. Design, setting and participants: We obtained data from 15 population-based cohorts enrolled between 1985 and 2005 in eight European countries (N = 303 431; mean follow-up 14.1 yr). We estimated exposure to nitrogen oxides (NO2 and NOx), particulate matter (PM) with diameter <10 mu m (PM10), <2.5 mu m (PM2.5). between 2.5 and 10 mu m (PM2.5-10). PM2.5 absorbance (soot), elemental constituents of PM, organic carbon, and traffic density at baseline home addresses using standardized land-use regression models from the European Study of Cohorts for Air Pollution Effects project. Outcome measurements and statistical analysis: We used Cox proportional-hazards models with adjustment for potential confounders for cohort-specific analyses and meta-analyses to estimate summary hazard ratios (HRS) for BC incidence. Results and limitations: During follow-up, 943 incident BC cases were diagnosed. In the meta-analysis, none of the exposures were associated with BC risk. The summary HRs associated with a 10-mu g/m(3) increase in NO2 and 51-mu g/m(3) increase in PM2.5 were 0.98 (95% confidence interval [CI] 0.89-1.08) and 0.86 (95% CI 0.63-1.18), respectively. Limitations include the lack of information about lifetime exposure. Conclusions: There was no evidence of an association between exposure to outdoor air pollution levels at place of residence and risk of BC. Patient summary: We assessed the link between outdoor air pollution at place of residence and bladder cancer using the largest study population to date and extensive assessment of exposure and comprehensive data on personal risk factors such as smoking. We found no association between the levels of outdoor air pollution at place of residence and bladder cancer risk.
  •  
8.
  • Raaschou-Nielsen, Ole, et al. (författare)
  • Outdoor air pollution and risk for kidney parenchyma cancer in 14 European cohorts
  • 2017
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 140:7, s. 1528-1537
  • Tidskriftsartikel (refereegranskat)abstract
    • Several studies have indicated weakly increased risk for kidney cancer among occupational groups exposed to gasoline vapors, engine exhaust, polycyclic aromatic hydrocarbons and other air pollutants, although not consistently. It was the aim to investigate possible associations between outdoor air pollution at the residence and the incidence of kidney parenchyma cancer in the general population. We used data from 14 European cohorts from the ESCAPE study. We geocoded and assessed air pollution concentrations at baseline addresses by land-use regression models for particulate matter (PM10 , PM2.5 , PMcoarse , PM2.5 absorbance (soot)) and nitrogen oxides (NO2 , NOx ), and collected data on traffic. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effects models for meta-analyses to calculate summary hazard ratios (HRs). The 289,002 cohort members contributed 4,111,908 person-years at risk. During follow-up (mean 14.2 years) 697 incident cancers of the kidney parenchyma were diagnosed. The meta-analyses showed higher HRs in association with higher PM concentration, e.g. HR=1.57 (95%CI: 0.81-3.01) per 5μg/m(3) PM2.5 and HR=1.36 (95%CI: 0.84-2.19) per 10(-5) m(-1) PM2.5 absorbance, albeit never statistically significant. The HRs in association with nitrogen oxides and traffic density on the nearest street were slightly above one. Sensitivity analyses among participants who did not change residence during follow-up showed stronger associations, but none were statistically significant. This study provides suggestive evidence that exposure to outdoor PM at the residence may be associated with higher risk for kidney parenchyma cancer; the results should be interpreted cautiously as associations may be due to chance.
  •  
9.
  • Wang, Meng, et al. (författare)
  • Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts : Results from the ESCAPE and TRANSPHORM projects
  • 2014
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 66, s. 97-106
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only. Aims: The aim of this study was to examine the association of PM composition with cardiovascular mortality. Methods: We used data from 19 European ongoing cohorts within the framework of the ESCAPE (European Study of Cohorts for Air Pollution Effects) and TRANSPHORM (Transport related Air Pollution and Health impacts Integrated Methodologies for Assessing Particulate Matter) projects. Residential annual average exposure to elemental constituents within particle matter smaller than 2.5 and 10 pm (PM2.5 and PM10) was estimated using Land Use Regression models. Eight elements representing major sources were selected a priori (copper, iron, potassium, nickel, sulfur, silicon, vanadium and zinc). Cohort-specific analyses were conducted using Cox proportional hazards models with a standardized protocol. Random-effects metaanalysis was used to calculate combined effect estimates. Results: The total population consisted of 322,291 participants, with 9545 CVD deaths. We found no statistically significant associations between any of the elemental constituents in PM2.5 or PM10 and CVD mortality in the pooled analysis. Most of the hazard ratios (HRs) were close to unity, e.g. for PM10 Fe the combined HR was 0.96 (0.84-1.09). Elevated combined HRs were found for PM2.5 Si (1.17, 95% Cl: 0.93-1.47), and S in PM2.5 (1.08,95% Cl: 0.95-1.22) and PM10 (1.09,95% Cl: 0.90-132). Conclusion: In a joint analysis of 19 European cohorts, we found no statistically significant association between long-term exposure to 8 elemental constituents of particles and total cardiovascular mortality.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy