SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marie Yannick) ;mspu:(researchreview)"

Sökning: WFRF:(Marie Yannick) > Forskningsöversikt

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baetzner, Anke S., et al. (författare)
  • Preparing medical first responders for crises : a systematic literature review of disaster training programs and their effectiveness
  • 2022
  • Ingår i: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. - : BioMed Central (BMC). - 1757-7241. ; 30:1
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Adequate training and preparation of medical first responders (MFRs) are essential for an optimal performance in highly demanding situations like disasters (e.g., mass accidents, natural catastrophes). The training needs to be as effective as possible, because precise and effective behavior of MFRs under stress is central for ensuring patients’ survival and recovery. This systematic review offers an overview of scientifically evaluated training methods used to prepare MFRs for disasters. It identifies different effectiveness indicators and provides an additional analysis of how and to what extent the innovative training technologies virtual (VR) and mixed reality (MR) are included in disaster training research.Methods: The systematic review was conducted according to the PRISMA guidelines and focused specifically on (quasi-)experimental studies published between January 2010 and September 2021. The literature search was conducted via Web of Science and PubMed and led to the inclusion of 55 articles. Results: The search identified several types of training, including traditional (e.g., lectures, real-life scenario training) and technology-based training (e.g., computer-based learning, educational videos). Most trainings consisted of more than one method. The effectiveness of the trainings was mainly assessed through pre-post comparisons of knowledge tests or self-reported measures although some studies also used behavioral performance measures (e.g., triage accuracy). While all methods demonstrated effectiveness, the literature indicates that technology-based methods often lead to similar or greater training outcomes than traditional trainings. Currently, few studies systematically evaluated immersive VR and MR training.Conclusion: To determine the success of a training, proper and scientifically sound evaluation is necessary. Of the effectiveness indicators found, performance assessments in simulated scenarios are closest to the target behavior during real disasters. For valid yet inexpensive evaluations, objectively assessible performance measures, such as accuracy, time, and order of actions could be used. However, performance assessments have not been applied often. Furthermore, we found that technology-based training methods represent a promising approach to train many MFRs repeatedly and efficiently. These technologies offer great potential to supplement or partially replace traditional training. Further research is needed on those methods that have been underrepresented, especially serious gaming, immersive VR, and MR.
  •  
2.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy