SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Markenroth Bloch Karin) ;hsvcat:1"

Sökning: WFRF:(Markenroth Bloch Karin) > Naturvetenskap

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Axelsson, L., et al. (författare)
  • Study of the unbound nucleus 11N by elastic resonance scattering
  • 1996
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813 .- 2469-9985 .- 2469-9993. ; 54:4, s. 1511-1514
  • Tidskriftsartikel (refereegranskat)abstract
    • Resonances in the unbound nucleus 11N have been studied, using the resonance scattering reaction 10C+p. The data give evidence for three states above the 10C+p threshold with energies 1.30, 2.04, and 3.72 MeV. These states can be interpreted, in a potential-model analysis, as the ground state and the first two excited states with spin-parity 1 / 2+, 1 / 2-, and 5 / 2+ arising from the shell-model orbitals 1s1 / 2, 0p1 / 2, and 0d5 / 2. A narrow state superposed on a broad structure found at higher energy could be interpreted as the mirror state of the 3 / 2- in 11Be shifted down in energy. This shift would suggest a large radius of the potential.
  •  
2.
  • Knutsson, Linda, et al. (författare)
  • Arterial Input Functions and Tissue Response Curves in Dynamic Glucose-Enhanced (DGE) Imaging: Comparison Between glucoCEST and Blood Glucose Sampling in Humans
  • 2018
  • Ingår i: Tomography : a journal for imaging research. - : MDPI AG. - 2379-1381. ; 4:4, s. 164-171
  • Tidskriftsartikel (refereegranskat)abstract
    • Dynamic glucose-enhanced (DGE) imaging uses chemical exchange saturation transfer magnetic resonance imaging to retrieve information about the microcirculation using infusion of a natural sugar (D-glucose). However, this new approach is not yet well understood with respect to the dynamic tissue response. DGE time curves for arteries, normal brain tissue, and cerebrospinal fluid (CSF) were analyzed in healthy volunteers and compared with the time dependence of sampled venous plasma blood glucose levels. The arterial response curves (arterial input function [AIF]) compared reasonably well in shape with the time curves of the sampled glucose levels but could also differ substantially. The brain tissue response curves showed mainly negative responses with a peak intensity that was of the order of 10 times smaller than the AIF peak and a shape that was susceptible to both noise and partial volume effects with CSF, attributed to the low contrast-to-noise ratio. The CSF response curves showed a rather large and steady increase of the glucose uptake during the scan, due to the rapid uptake of D-glucose in CSF. Importantly, and contrary to gadolinium studies, the curves differed substantially among volunteers, which was interpreted to be caused by variations in insulin response. In conclusion, while AIFs and tissue response curves can be measured in DGE experiments,partial volume effects, low concentration of D-glucose in tissue, and osmolality effects between tissue and blood may prohibit quantification of normal tissue perfusion parameters. However, separation of tumor responses from normal tissue responses would most likely be feasible.
  •  
3.
  • Knutsson, Linda, et al. (författare)
  • Dynamic susceptibility contrast MRI with a prebolus contrast agent administration design for improved absolute quantification of perfusion.
  • 2014
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley. - 1522-2594 .- 0740-3194. ; 72:4, s. 996-1006
  • Tidskriftsartikel (refereegranskat)abstract
    • Arterial partial-volume effects (PVEs) often hamper reproducible absolute quantification of cerebral blood flow (CBF) and cerebral blood volume (CBV) obtained by dynamic susceptibility contrast MRI (DSC-MRI). The aim of this study was to examine whether arterial PVEs in DSC-MRI data can be minimized by rescaling the arterial input function (AIF) using a sagittal-sinus venous output function obtained following a prebolus administration of a low dose of contrast agent.
  •  
4.
  •  
5.
  •  
6.
  • Seidemo, Anina, et al. (författare)
  • Tissue response curve shape analysis of dynamic glucose enhanced (DGE) and dynamic contrast enhanced (DCE) MRI in patients with brain tumor
  • 2023
  • Ingår i: NMR in Biomedicine. - : Wiley. - 0952-3480 .- 1099-1492. ; 36:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Dynamic glucose enhanced (DGE) MRI is used to study the signal intensity time course (tissue response curve) after D-glucose injection. D-glucose has potential as a biodegradable alternative or complement to gadolinium-based contrast agents, with DGE being comparable to dynamic contrast enhanced (DCE) MRI. However, the tissue uptake kinetics as well as the detection methods of DGE differ from DCE, and it is relevant to compare these techniques in terms of spatiotemporal enhancement patterns. This study aims to develop a DGE analysis method based on tissue response curve shapes, and to investigate whether DGE MRI provides similar or complementary information to DCE MRI. Eleven patients with suspected gliomas were studied. Tissue response curves were measured for DGE and DCE MRI at 7 tesla and the area under curve (AUC) was assessed. Seven types of response curve shapes were postulated and subsequently identified by deep learning to create color-coded “curve maps” showing the spatial distribution of different curve types. DGE AUC values were significantly higher in lesions than in normal tissue (p
  •  
7.
  • Wirestam, Ronnie, et al. (författare)
  • Cerebral perfusion information obtained by dynamic contrast-enhanced phase-shift magnetic resonance imaging: comparison with model-free arterial spin labelling.
  • 2010
  • Ingår i: Clinical Physiology and Functional Imaging. - 1475-0961. ; 30:5, s. 375-379
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary Phase-shift time curves following a bolus injection of gadolinium contrast agent were registered for grey-matter regions and large vessels in 14 subjects. Deconvolving a tissue phase-shift curve with a phase-based arterial input function resulted in a tissue residue function R(t). The peak value of R(t) provided a relative cerebral blood flow (CBF) index, while the area-to-height ratio of R(t) provided quantitative mean transit time (MTT). For comparison, quantitative CBF values in grey matter were acquired using model-free arterial spin labelling (ASL). The phase-based relative CBF estimates showed good linear correlation with ASL-based CBF (r = 0.82). Grey-matter MTT was 4.9 +/- 1.1 s (mean +/- SD).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy