SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Markenroth Bloch Karin) ;pers:(Knutsson Linda)"

Sökning: WFRF:(Markenroth Bloch Karin) > Knutsson Linda

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Knutsson, Linda, et al. (författare)
  • Absolute quantification of cerebral blood flow: correlation between dynamic susceptibility contrast MRI and model-free arterial spin labeling.
  • 2010
  • Ingår i: Magnetic Resonance Imaging. - : Elsevier BV. - 1873-5894 .- 0730-725X. ; 28:1, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To compare absolute cerebral blood flow (CBF) estimates obtained by model-free arterial spin labeling (ASL) and dynamic susceptibility contrast MRI (DSC-MRI), corrected for partial volume effects (PVEs). METHODS: CBF was measured using DSC-MRI and model-free ASL (quantitative signal targeting with alternating radiofrequency labeling of arterial regions) at 3 T in 15 subjects with brain tumor, and the two modalities were compared with regard to CBF estimates in normal gray matter (GM) and DSC-to-ASL CBF ratios in selected tumor regions. The DSC-MRI CBF maps were calculated using a global arterial input function (AIF) from the sylvian-fissure region, but, in order to minimize PVEs, the AIF time integral was rescaled by a venous output function time integral obtained from the sagittal sinus. RESULTS: In GM, the average DSC-MRI CBF estimate was 150+/-45 ml/(min 100 g) (mean+/-SD) while the corresponding ASL CBF was 44+/-10 ml/(min 100 g). The linear correlation between GM CBF estimates obtained by DSC-MRI and ASL was r=.89, and observed DSC-to-ASL CBF ratios differed by less than 3% between GM and tumor regions. CONCLUSIONS: A satisfactory positive linear correlation between the CBF estimates obtained by model-free ASL and DSC-MRI was observed, and DSC-to-ASL CBF ratios showed no obvious tissue dependence.
  •  
2.
  • Knutsson, Linda, et al. (författare)
  • Arterial Input Functions and Tissue Response Curves in Dynamic Glucose-Enhanced (DGE) Imaging: Comparison Between glucoCEST and Blood Glucose Sampling in Humans
  • 2018
  • Ingår i: Tomography : a journal for imaging research. - : MDPI AG. - 2379-1381. ; 4:4, s. 164-171
  • Tidskriftsartikel (refereegranskat)abstract
    • Dynamic glucose-enhanced (DGE) imaging uses chemical exchange saturation transfer magnetic resonance imaging to retrieve information about the microcirculation using infusion of a natural sugar (D-glucose). However, this new approach is not yet well understood with respect to the dynamic tissue response. DGE time curves for arteries, normal brain tissue, and cerebrospinal fluid (CSF) were analyzed in healthy volunteers and compared with the time dependence of sampled venous plasma blood glucose levels. The arterial response curves (arterial input function [AIF]) compared reasonably well in shape with the time curves of the sampled glucose levels but could also differ substantially. The brain tissue response curves showed mainly negative responses with a peak intensity that was of the order of 10 times smaller than the AIF peak and a shape that was susceptible to both noise and partial volume effects with CSF, attributed to the low contrast-to-noise ratio. The CSF response curves showed a rather large and steady increase of the glucose uptake during the scan, due to the rapid uptake of D-glucose in CSF. Importantly, and contrary to gadolinium studies, the curves differed substantially among volunteers, which was interpreted to be caused by variations in insulin response. In conclusion, while AIFs and tissue response curves can be measured in DGE experiments,partial volume effects, low concentration of D-glucose in tissue, and osmolality effects between tissue and blood may prohibit quantification of normal tissue perfusion parameters. However, separation of tumor responses from normal tissue responses would most likely be feasible.
  •  
3.
  • Knutsson, Linda, et al. (författare)
  • Dynamic susceptibility contrast MRI with a prebolus contrast agent administration design for improved absolute quantification of perfusion.
  • 2014
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley. - 1522-2594 .- 0740-3194. ; 72:4, s. 996-1006
  • Tidskriftsartikel (refereegranskat)abstract
    • Arterial partial-volume effects (PVEs) often hamper reproducible absolute quantification of cerebral blood flow (CBF) and cerebral blood volume (CBV) obtained by dynamic susceptibility contrast MRI (DSC-MRI). The aim of this study was to examine whether arterial PVEs in DSC-MRI data can be minimized by rescaling the arterial input function (AIF) using a sagittal-sinus venous output function obtained following a prebolus administration of a low dose of contrast agent.
  •  
4.
  •  
5.
  •  
6.
  • Seidemo, Anina, et al. (författare)
  • Tissue response curve shape analysis of dynamic glucose enhanced (DGE) and dynamic contrast enhanced (DCE) MRI in patients with brain tumor
  • 2023
  • Ingår i: NMR in Biomedicine. - : Wiley. - 0952-3480 .- 1099-1492. ; 36:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Dynamic glucose enhanced (DGE) MRI is used to study the signal intensity time course (tissue response curve) after D-glucose injection. D-glucose has potential as a biodegradable alternative or complement to gadolinium-based contrast agents, with DGE being comparable to dynamic contrast enhanced (DCE) MRI. However, the tissue uptake kinetics as well as the detection methods of DGE differ from DCE, and it is relevant to compare these techniques in terms of spatiotemporal enhancement patterns. This study aims to develop a DGE analysis method based on tissue response curve shapes, and to investigate whether DGE MRI provides similar or complementary information to DCE MRI. Eleven patients with suspected gliomas were studied. Tissue response curves were measured for DGE and DCE MRI at 7 tesla and the area under curve (AUC) was assessed. Seven types of response curve shapes were postulated and subsequently identified by deep learning to create color-coded “curve maps” showing the spatial distribution of different curve types. DGE AUC values were significantly higher in lesions than in normal tissue (p
  •  
7.
  • van Westen, Danielle, et al. (författare)
  • Correlation between arterial blood volume obtained by arterial spin labelling and cerebral blood volume in intracranial tumours.
  • 2011
  • Ingår i: Magma. - : Springer Science and Business Media LLC. - 1352-8661. ; 24, s. 211-223
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To compare measurements of the arterial blood volume (aBV), a perfusion parameter calculated from arterial spin labelling (ASL), and cerebral blood volume (CBV), calculated from dynamic susceptibility contrast (DSC) MRI. In the clinic, CBV is used for grading of intracranial tumours. MATERIALS AND METHODS: Estimates of aBV from the model-free ASL technique quantitative STAR labelling of arterial regions (QUASAR) experiment and of DSC-CBV were obtained at 3T in ten patients with eleven tumours (three grade III gliomas, four glioblastomas and four meningiomas, two in one patient). Parametric values of aBV and CBV were determined in the tumour as well as in normal grey matter (GM), and tumour-to-GM aBV and CBV ratios were calculated. RESULTS: In a 4-pixel ROI representing maximal tumour values, the coefficient of determination R (2) was 0.61 for the comparison of ASL-based aBV tumour-to-GM ratios and DSC-MRI-based CBV tumour-to-GM ratios and 0.29 for the comparison of parametric values of ASL-aBV and DSC-CBV, under the assumption of proportionality. Both aBV and CBV showed a non-significant tendency to increase when going from grade III gliomas to glioblastomas to meningiomas. CONCLUSION: These results suggest that measurement of aBV is a potential tool for non-invasive assessment of blood volume in intracranial tumours.
  •  
8.
  • Wirestam, Ronnie, et al. (författare)
  • Cerebral perfusion information obtained by dynamic contrast-enhanced phase-shift magnetic resonance imaging: comparison with model-free arterial spin labelling.
  • 2010
  • Ingår i: Clinical Physiology and Functional Imaging. - 1475-0961. ; 30:5, s. 375-379
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary Phase-shift time curves following a bolus injection of gadolinium contrast agent were registered for grey-matter regions and large vessels in 14 subjects. Deconvolving a tissue phase-shift curve with a phase-based arterial input function resulted in a tissue residue function R(t). The peak value of R(t) provided a relative cerebral blood flow (CBF) index, while the area-to-height ratio of R(t) provided quantitative mean transit time (MTT). For comparison, quantitative CBF values in grey matter were acquired using model-free arterial spin labelling (ASL). The phase-based relative CBF estimates showed good linear correlation with ASL-based CBF (r = 0.82). Grey-matter MTT was 4.9 +/- 1.1 s (mean +/- SD).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy