SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marklund Stefan L.) ;pers:(Forsgren Lars)"

Sökning: WFRF:(Marklund Stefan L.) > Forsgren Lars

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Jacobsson, Johan, et al. (författare)
  • Superoxide dismutase in CSF from amyotrophic lateral sclerosis patients with and without CuZn-superoxide dismutase mutations
  • 2001
  • Ingår i: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 124:7, s. 1461-1466
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in CuZn-superoxide dismutase (CuZn-SOD) have been linked to familial amyotrophic lateral sclerosis (ALS), and motor neurone death is caused by the gain of a toxic property of the mutant protein. Here we determined amounts, activity and molecular forms of CuZn-SOD in CSF from ALS patients carrying the D90A and other CuZn-SOD mutations and patients without such mutations. There were no differences in amount of protein and enzymic activities of CuZn-SOD between 37 neurological controls, 54 sporadic and 12 familial ALS cases, and 10 cases homozygous for the D90A mutation. Three cases heterozygous for the A89V, S105L and G114A CuZn-SOD mutations showed low amounts of CuZn-SOD. There was no evidence for accumulation of inactive protein in any of the groups. Immunoblots showed no evidence for the presence of any precipitates or other molecular forms of CuZn-SOD with higher molecular weight in the groups. About 25% of the CuZn-SOD subunits in CSF from controls shows an N-terminal truncation. This truncated portion does not differ between controls and ALS groups not carrying CuZn-SOD mutations, but is 70% larger in samples from D90A homozygous ALS patients. The findings suggest an essentially normal amount and activity of D90A mutant CuZn-SOD in CNS tissues of ALS cases. The increased occurrence of N-terminally truncated mutant subunits may indicate a difference in degradation routes compared with the wild-type enzyme, resistance against subsequent proteolytic steps and/or a compromised downstream proteolytic machinery. Molecular fragments accumulated to a greater extent from the D90A mutant enzyme might contribute to the motor neurone degeneration. We also determined the other SOD isoenzymes: in the controls, CuZn-SOD contributed 75%, extracellular SOD 25% and Mn-SOD <5% of the total SOD activity. There was no difference in the amount of extracellular SOD between any of the groups.
  •  
6.
  •  
7.
  • Wu, Junfang, et al. (författare)
  • NMR analysis of the CSF and plasma metabolome of rigorously matched amyotrophic lateral sclerosis, Parkinson's disease and control subjects
  • 2016
  • Ingår i: Metabolomics. - : Springer Science and Business Media LLC. - 1573-3882 .- 1573-3890. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD) are two severe neurodegenerative disorders for which the disease mechanisms are poorly understood and reliable biomarkers are absent.Objectives: To identify metabolite biomarkers for ALS and PD, and to gain insights into which metabolic pathways are involved in disease.Methods: Nuclear magnetic resonance (NMR) metabolomics was utilized to characterize the metabolite profiles of cerebrospinal fluid (CSF) and plasma from individuals in three age, gender, and sampling-date matched groups, comprising 22 ALS, 22 PD and 28 control subjects.Results: Multivariate analysis of NMR data generated robust discriminatory models for separation of ALS from control subjects. ALS patients showed increased concentrations of several metabolites in both CSF and plasma, these are alanine (CSF fold change = 1.22, p = 0.005), creatine (CSF-fc = 1.17, p = 0.001), glucose (CSF-fc = 1.11, p = 0.036), isoleucine (CSF-fc = 1.24, p = 0.002), and valine (CSF-fc = 1.17, p = 0.014). Additional metabolites in CSF (creatinine, dimethylamine and lactic acid) and plasma (acetic acid, glutamic acid, histidine, leucine, pyruvate and tyrosine) were also important for this discrimination. Similarly, panels of CSF-metabolites that discriminate PD from ALS and control subjects were identified.Conclusions: The results for the ALS patients suggest an affected creatine/creatinine pathway and an altered branched chain amino acid (BCAA) metabolism, and suggest links to glucose and energy metabolism. Putative metabolic markers specific for ALS (e.g. creatinine and lactic acid) and PD (e.g. 3-hydroxyisovaleric acid and mannose) were identified, while several (e.g. creatine and BCAAs) were shared between ALS and PD, suggesting some overlap in metabolic alterations in these disorders.
  •  
8.
  • Wuolikainen, Anna, et al. (författare)
  • Multi-platform mass spectrometry analysis of the CSF and plasma metabolomes of rigorously matched amyotrophic lateral sclerosis, Parkinson's disease and control subjects
  • 2016
  • Ingår i: Molecular Biosystems. - : Royal Society of Chemistry (RSC). - 1742-206X .- 1742-2051. ; 12:4, s. 1287-1298
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) are protein-aggregation diseases that lack clear molecular etiologies. Biomarkers could aid in diagnosis, prognosis, planning of care, drug target identification and stratification of patients into clinical trials. We sought to characterize shared and unique metabolite perturbations between ALS and PD and matched controls selected from patients with other diagnoses, including differential diagnoses to ALS or PD that visited our clinic for a lumbar puncture. Cerebrospinal fluid (CSF) and plasma from rigorously age-, sex- and sampling-date matched patients were analyzed on multiple platforms using gas chromatography (GC) and liquid chromatography (LC)-mass spectrometry (MS). We applied constrained randomization of run orders and orthogonal partial least squares projection to latent structure-effect projections (OPLS-EP) to capitalize upon the study design. The combined platforms identified 144 CSF and 196 plasma metabolites with diverse molecular properties. Creatine was found to be increased and creatinine decreased in CSF of ALS patients compared to matched controls. Glucose was increased in CSF of ALS patients and alpha-hydroxybutyrate was increased in CSF and plasma of ALS patients compared to matched controls. Leucine, isoleucine and ketoleucine were increased in CSF of both ALS and PD. Together, these studies, in conjunction with earlier studies, suggest alterations in energy utilization pathways and have identified and further validated perturbed metabolites to be used in panels of biomarkers for the diagnosis of ALS and PD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy