SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marques C.) ;lar1:(bth)"

Sökning: WFRF:(Marques C.) > Blekinge Tekniska Högskola

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alves, Gustavo R., et al. (författare)
  • International Cooperation for Remote Laboratory Use
  • 2018
  • Ingår i: Contributions to Higher Engineering Education. - Singapore : Springer. - 9789811089176 ; , s. 1-31
  • Bokkapitel (refereegranskat)abstract
    • Experimenting is fundamental to the training process of all scientists and engineers. While experiments have been traditionally done inside laboratories, the emergence of Information and Communication Technologies added two alternatives accessible anytime, anywhere. These two alternatives are known as virtual and remote laboratories and are sometimes indistinguishably referred as online laboratories. Similarly to other instructional technologies, virtual and remote laboratories require some effort from teachers in integrating them into curricula, taking into consideration several factors that affect their adoption (i.e., cost) and their educational effectiveness (i.e., benefit). This chapter analyzes these two dimensions and sustains the case where only through international cooperation it is possible to serve the large number of teachers and students involved in engineering education. It presents an example in the area of electrical and electronics engineering, based on a remote laboratory named Virtual Instruments System in Reality, and it then describes how a number of European and Latin American institutions have been cooperating under the scope of an Erasmus+ project, for spreading its use in Brazil and Argentina.
  •  
2.
  • Alves, G.R., et al. (författare)
  • Using VISIR in a large undergraduate course : Preliminary assessment results
  • 2011
  • Konferensbidrag (refereegranskat)abstract
    • The use of remote labs in undergraduate courses has been reported in literature several times since the mid 90's. Nevertheless, very few articles present results about the learning gains obtained by students using them, especially with a large number of students, thus suggesting a lack of data concerning their pedagogical effectiveness. This paper addresses such a gap by presenting some preliminary results concerning the use of a remote laboratory, known as VISIR, in a large undergraduate course on Applied Physics, with over 500 students enrolled.
  •  
3.
  • Felgueiras, C., et al. (författare)
  • A sustainable approach to laboratory experimentation
  • 2019
  • Ingår i: TEEM'19: SEVENTH INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ECOSYSTEMS FOR ENHANCING MULTICULTURALITY. - New York, NY, USA : Association for Computing Machinery. - 9781450371919 ; , s. 500-506
  • Konferensbidrag (refereegranskat)abstract
    • Sustainability is currently a general concern in society and in particular in the use of laboratories for educational purposes. Although laboratories are unavoidable facilities for education, they often produce waste resulting from students' experiments. To contribute for sustainable solutions in education, the use of remote laboratories instead of the traditional hands-on laboratories should be considered in every engineering course. It is precisely this aspect that is discussed in the current paper. Some comments about the importance of sustainability in education are made. Later, it is described the use of a remote laboratory named VISIR in a course held at the Polytechnic of Porto - School of Engineering, for the conduction of an electronic experiment named Schmitt Trigger. At the end, some comments about the contribution of this remote lab for sustainability in education, are provided. © 2019 ACM.
  •  
4.
  • A.V., Fidalgo, et al. (författare)
  • Adapting remote labs to learning scenarios : Case studies using VISIR and remotElectLab
  • 2014
  • Ingår i: Revista Iberoamericana de Tecnologias del Aprendizaje. - : Education Society of IEEE (Spanish Chapter). - 1932-8540. ; 9:1, s. 33-39
  • Tidskriftsartikel (refereegranskat)abstract
    • Remote laboratories are an emergent technological and pedagogical tool at all education levels, and their widespread use is an important part of their own improvement and evolution. This paper describes several issues encountered on laboratorial classes, on higher education courses, when using remote laboratories based on PXI systems, either using the VISIR system or an alternate in-house solution. Three main issues are presented and explained, all reported by teachers, that gave support to students' use of remote laboratories. The first issue deals with the need to allow students to select the actual place where an ammeter is to be inserted on electric circuits, even incorrectly, therefore emulating real-world difficulties. The second one deals with problems with timing when several measurements are required at short intervals, as in the discharge cycle of a capacitor. In addition, the last issue deals with the use of a multimeter in dc mode when reading ac values, a use that collides with the lab settings. All scenarios are presented and discussed, including the solution found for each case. The conclusion derived from the described work is that the remote laboratories area is an expanding field, where practical use leads to improvement and evolution of the available solutions, requiring a strict cooperation and information-sharing between all actors, i.e., developers, teachers, and students.
  •  
5.
  • Fidalgo, André, et al. (författare)
  • Using remote labs to serve different teacher's needs : A case study with VISIR and RemotElectLab
  • 2012
  • Konferensbidrag (refereegranskat)abstract
    • Remote Laboratories are an emergent technological and pedagogical tool at all education levels, and their widespread use is an important part of their own improvement and evolution. This paper describes several issues encountered on laboratorial classes, on higher education courses, when using remote laboratories based on PXI systems, either using the VISIR system or an alternate in-house solution. Three main issues are presented and explained, all reported by teachers that gave support to students use of remote laboratories. The first issue deals with the need to allow students to select the actual place where an ammeter is to be inserted on electric circuits, even incorrectly, therefore emulating real world difficulties. The second one deals with problems with timing when several measurements are required at short intervals, as in the discharge cycle of a capacitor. And the last issue deals with the use of a multimeter in DC mode when reading AC values, a use that collides with the lab settings. All scenarios are presented and discussed including the solution found for each case. The conclusion derived from the described work is that the remote laboratories area is an expanding field, where practical use leads to improvement and evolution of the available solutions, requiring a strict cooperation and information sharing between all actors, i.e. developers, teachers and students.
  •  
6.
  • Garcia-Loro, F., et al. (författare)
  • PILAR : A Federation of VISIR Remote Laboratory Systems for Educational Open Activities
  • 2018
  • Ingår i: Proceedings of 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering, TALE 2018. - : Institute of Electrical and Electronics Engineers Inc.. - 9781538665220 ; , s. 134-141
  • Konferensbidrag (refereegranskat)abstract
    • Social demands have promoted an educational approach based on an 'anywhere and anytime' premise. Remote laboratories have emerged as the answer to the demands of technical educational areas for adapting themselves to this scenario. The result has not only benefit distance learning students but has provided new learning scenarios both for teachers and students as well as allowing a flexible approach to experimental topics. However, as any other solution for providing practical scenarios (hands-on labs, virtual labs or simulators), remote labs face several constraints inherited from the subsystems of its deployment - hardware (real instruments, equipment and scenario) and software (analog/digital conversions, communications, workbenches, etc.}. This paper describes the Erasmus+ project Platform Integration of Laboratories based on the Architecture of visiR (PILAR) which deals with several units of the federation installed in different educational institutions and devoted to analog electronics and electrical circuits. Based on the limitations of remote labs, the need for the federation will be justified and its benefits will be described by taking advantage of its strengths. The challenges that have come up during the different stages and the different approaches to design are also going to be described and analyzed. © 2018 IEEE.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy