SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Martín V) ;lar1:(hv)"

Sökning: WFRF:(Martín V) > Högskolan Väst

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jones, Benedict C, et al. (författare)
  • To which world regions does the valence-dominance model of social perception apply?
  • 2021
  • Ingår i: Nature Human Behaviour. - : Springer Science and Business Media LLC. - 2397-3374. ; 5:1, s. 159-169
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past 10 years, Oosterhof and Todorov's valence-dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov's methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov's original analysis strategy, the valence-dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence-dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution. PROTOCOL REGISTRATION: The stage 1 protocol for this Registered Report was accepted in principle on 5 November 2018. The protocol, as accepted by the journal, can be found at https://doi.org/10.6084/m9.figshare.7611443.v1 .
  •  
2.
  • Saha, B. P., et al. (författare)
  • Investigation of compaction behavior of alumina nano powder
  • 2012
  • Ingår i: Powder Technology. - 0032-5910 .- 1873-328X. ; 224, s. 90-95
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper investigates the impact of natural agglomerates on powder processing and consolidation through a comprehensive study of compaction of alumina powders of different particle size (ranging from 10 to 650 nm) and shape (spherical and irregular). The yield points of individual powders were determined from the green density-pressure relationship to ascertain the effect of initial particle size on agglomeration. The effect of surface modification by binder addition, which suppresses the significance of the initial particle size, was also studied. Diametral compression tests were carried out to estimate the green strength of the compacts. Results revealed that the green strength is strongly influenced not only by the initial particle size but also by the particle size distribution. The diametrically broken samples were subjected to fractographic studies followed by image analysis to calculate the agglomerate area fraction. The area fraction was found to be high for samples with low green strength and vice versa. (C) 2012 Elsevier B.V. All rights reserved.
  •  
3.
  • Balakrishnan, A., et al. (författare)
  • Effect of particle size in aggregated and agglomerated ceramic powders
  • 2010
  • Ingår i: Acta Materialia. - 1359-6454 .- 1873-2453. ; 58:3, s. 802-812
  • Tidskriftsartikel (refereegranskat)abstract
    • This work describes the compaction of agglomerated and aggregated ceramic powders with special emphasis on the role of primary particle size. Discrete element simulations are used to model weakly bonded agglomerates as well as strongly bonded aggregates. Crushing tests are carried out to obtain the characteristic strength of single agglomerate and aggregate. Microstructure evolution and stress-strain curves indicate that aggregates undergo a brittle to plastic-like transition as particle size decreases below 50 nm. It is shown that agglomerates made of nanoparticles exhibit much greater strength than those made of micron-sized particles, with an approximately inverse linear relationship with primary particle size. Simulation of the uniaxial compaction of a representative volume element of powder demonstrates that adhesive effects are responsible for the difficulty to compact nanopowders and for the heterogeneity of microstructure prior to sintering. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  •  
4.
  • Löbel, Martin, et al. (författare)
  • Microstructure and Corrosion Properties of AlCrFeCoNi High-Entropy Alloy Coatings Prepared by HVAF and HVOF
  • 2022
  • Ingår i: Journal of thermal spray technology (Print). - : Springer. - 1059-9630 .- 1544-1016. ; :1-2, s. 247-255
  • Tidskriftsartikel (refereegranskat)abstract
    • High-entropy alloys (HEAs) represent an innovative development approach for new alloy systems. These materials have been found to yield promising properties, such as high strength in combination with sufficient ductility as well as high wear and corrosion resistance. Especially for alloys with a body-centered cubic (bcc) structure, advantageous surface properties have been revealed. However, typical HEA systems contain high contents of expensive or scarce elements. Consequently, applying them as coatings where their use is limited to the surface represents an exciting pathway enabling economical exploitation of their superior properties. Nevertheless, processing conditions strongly influence the resulting microstructure and phase formation, which in turn has a considerable effect on the functional properties of HEAs. In the presented study, microstructural differences between high-velocity oxygen fuel (HVOF) and high-velocity air fuel (HVAF) sprayed coatings of the alloy AlCrFeCoNi are investigated. A metastable bcc structure is formed in both coating processes. Precipitation reactions are suppressed by the rapid solidification during atomization and by the relatively low thermal input during spraying. The coating resistance to corrosive media was investigated in detail, and an improved passivation behavior was observed in the HVAF coatings. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy