SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Martin Torres Javier) ;pers:(Mathanlal Thasshwin)"

Search: WFRF:(Martin Torres Javier) > Mathanlal Thasshwin

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cockell, Charles S., et al. (author)
  • Subsurface scientific exploration of extraterrestrial environments (MINAR 5) : analogue science, technology and education in the Boulby Mine, UK
  • 2019
  • In: International Journal of Astrobiology. - : Cambridges Institutes Press. - 1473-5504 .- 1475-3006. ; 18:2, s. 157-182
  • Journal article (peer-reviewed)abstract
    • The deep subsurface of other planetary bodies is of special interest for robotic and human exploration. The subsurface provides access to planetary interior processes, thus yielding insights into planetary formation and evolution. On Mars, the subsurface might harbour the most habitable conditions. In the context of human exploration, the subsurface can provide refugia for habitation from extreme surface conditions. We describe the fifth Mine Analogue Research (MINAR 5) programme at 1 km depth in the Boulby Mine, UK in collaboration with Spaceward Bound NASA and the Kalam Centre, India, to test instruments and methods for the robotic and human exploration of deep environments on the Moon and Mars. The geological context in Permian evaporites provides an analogue to evaporitic materials on other planetary bodies such as Mars. A wide range of sample acquisition instruments (NASA drills, Small Planetary Impulse Tool (SPLIT) robotic hammer, universal sampling bags), analytical instruments (Raman spectroscopy, Close-Up Imager, Minion DNA sequencing technology, methane stable isotope analysis, biomolecule and metabolic life detection instruments) and environmental monitoring equipment (passive air particle sampler, particle detectors and environmental monitoring equipment) was deployed in an integrated campaign. Investigations included studying the geochemical signatures of chloride and sulphate evaporitic minerals, testing methods for life detection and planetary protection around human-tended operations, and investigations on the radiation environment of the deep subsurface. The MINAR analogue activity occurs in an active mine, showing how the development of space exploration technology can be used to contribute to addressing immediate Earth-based challenges. During the campaign, in collaboration with European Space Agency (ESA), MINAR was used for astronaut familiarization with future exploration tools and techniques. The campaign was used to develop primary and secondary school and primary to secondary transition curriculum materials on-site during the campaign which was focused on a classroom extra vehicular activity simulation.
  •  
2.
  • Israel Nazarious, Miracle, et al. (author)
  • Pressure Optimized PowEred Respirator (PROPER) : A miniaturized wearable cleanroom and biosafety system for aerially transmitted viral infections such as COVID-19
  • 2020
  • In: HardwareX. - : Elsevier. - 2468-0672. ; 8
  • Journal article (peer-reviewed)abstract
    • The supply of Personal Protective Equipment (PPE) in hospitals to keep the Health Care Professionals (HCP) safe taking care of patients may be limited, especially during the outbreak of a new disease. In particular, the face and body protective equipment is critical to prevent the wearer from exposure to pathogenic biological airborne particulates. This situation has been now observed worldwide during the onset of the COVID-19 pandemic. As concern over shortages of PPE at hospitals grows, we share with the public and makers’ community the Pressure Optimized PowEred Respirator (PROPER) equipment, made out of COTS components. It is functionally equivalent to a Powered Air Purifying Respirator (PAPR). PROPER, a hood-based system which uses open source and easily accessible components is low-cost, relatively passive in terms of energy consumption and mechanisms, and easy and fast to 3D print, build and assemble. We have adapted our experience on building clean room environments and qualifying the bioburden of space instruments to this solution, which is in essence a miniaturized, personal, wearable cleanroom. PROPER would be able to offer better protection than an N95 respirator mask, mainly because it is insensitive to seal fit and it shields the eyes as well. The PROPER SMS fabric is designed for single-use and not intended for reuse, as they may start to tear and fail but the rest of the parts can be disinfected and reused. We provide a set of guidelines to build a low-cost 3D printed solution for an effective PAPR system and describe the procedures to validate it to comply with the biosafety level 3 requirements. We have validated the prototype of PROPER unit for air flow, ISO class cleanliness level, oxygen and carbon-dioxide gas concentrations during exhalation, and present here these results for illustration. We demonstrate that the area inside the hood is more than 200 times cleaner than the external ambient without the operator and more than 175 times with the operator and in an aerosol exposed environment. We also include the procedure to clean and disinfect the equipment for reuse. PROPER may be a useful addition to provide protection to HCPs against the SARS-CoV-2 virus or other potential future viral diseases that are transmitted aerially.
  •  
3.
  • Martin-Torres, Javier, et al. (author)
  • The HABIT (HabitAbility: Brine Irradiation and Temperature) environmental instrument for the ExoMars 2022 Surface Platform
  • 2020
  • In: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 190
  • Journal article (peer-reviewed)abstract
    • The HABIT (HabitAbility: Brine Irradiation and Temperature) instrument is a European payload of the ExoMars 2022 Surface Platform Kazachok that will characterize the present-day habitability at its landing place in Oxia Planum, Mars. HABIT consists of two modules: (i) EnvPack (Environmental Package) that monitors the thermal environment (air and ground), the incident ultraviolet radiation, the near surface winds and the atmospheric dust cycle; and (ii) BOTTLE (Brine Observation Transition To Liquid Experiment), an In-situ Resource Utilization instrument to produce liquid water for future Mars exploration. BOTTLE will be used also to investigate the electrical conductivity properties of the martian atmosphere, the present-day atmospheric-ground water cycle and to evaluate if liquid water can exist on Mars in the form of brines, and for how long. These variables measured by HABIT are critical to determine the present and future habitability of the martian surface. In this paper, we describe in detail the HABIT instrument and sensors, together with the calibration of its Flight Model (FM) and the Engineering Qualification Model (EQM) versions. The EnvPack module has heritage from previous missions operating on the surface of Mars, and the environmental observations of its sensors will be directly comparable to those delivered by those missions. HABIT can provide information of the local temperature with ±0.2 °C accuracy, local winds with ±0.3 m/s, surface brightness temperature with ±0.8 °C, incident UV irradiance with 10% error of its absolute value in the UV-A, UV-B, UV-C ranges, as well as in the total UV-ABC range, and two additional wavebands, dedicated to ozone absorption. The UV observations can be used to derive the total opacity column and thus monitor the dust and ozone cycles. BOTTLE can demonstrate the hydration state of a set of four deliquescent salts, which have been found on Mars (calcium chloride, ferric sulphate, magnesium perchlorate and sodium perchlorate) by monitoring their electric conductivity (EC). The EC of the air and the dry salts under Earth ambient, clean room conditions is of the order of 0.1 μScm−1. We have simulated HABIT operations, within an environmental chamber, under martian conditions similar to those expected at Oxia Planum. For dry, CO2 atmospheric conditions at martian pressures, the air EC can be as low as 10−8 μScm−1, however it increases with the relative humidity (RH) percentage. The laboratory experiments show that after an increase from 0 to 60% RH within a few hours, the EC of the air increased up to 10−1 μScm−1, magnesium perchlorate hydrated and reached values of 10 μScm-1, whereas calcium chloride deliquesced forming a liquid state with EC of 102 μScm−1. HABIT will operate with a regular cadence, through day and night. The Electronic Unit (EU) is protected with a heater that is activated when its temperature is below −33 °C and disabled if the temperature of the surface platform rises above −30 °C. Additionally, the heaters of the BOTTLE unit can be activated to dehydrate the salts and reset the experiment. HABIT weighs only 918 g. Its power consumption depends on the operation mode and internal temperature, and it varies between 0.7 W, for nominal operation, and 13.1 W (when heaters are turned on at full intensity). HABIT has a baseline data rate of 1.5 MB/sol. In addition to providing critical environmental observations, this light and robust instrument, will be the first demonstrator of a water capturing system on the surface of Mars, and the first European In-Situ Resource Utilization in the surface of another planet.
  •  
4.
  • Martorell, José Antonio Gordillo, et al. (author)
  • Metabolizing science from the laboratory to the classroom : The Metabolt Educational Experience
  • 2019
  • In: Journal of Engineering Science and Technology. - : STEM Publishers. ; 2:7, s. 9-26
  • Journal article (peer-reviewed)abstract
    • The present article summarizes a pilot knowledge co-creation process experience done with a group of 15 eleven and twelve years old students of Porsöskolan, a public school near Luleå Tekniska Universitet from September 2018 to January 2019. The experience is based on a true research project of the Group of Atmospheric Science (GAS) called METABOLT, an instrument to investigate the metabolic activity of microorganisms in soils by measuring the electrochemical and gaseous bio signatures. In this paper, we explain how we have designed, developed, applied and evaluated a complete learning and engagement strategy to bring science from the laboratory to the classroom. The experience adapts the scientific method to the primary classroom level, taking as practical case the METABOLT experiment: identification of a problem, hypothesis design, experiment creation to get results, analysis and confrontation with the hypothesis and provisional conclusions to verify or discard them. After the experience a set of surveys were given to all the stakeholders, students, teachers and researchers to evaluate their perception of the effects of the activity. One unexpected result is the difference in perception between the teachers and students on the learning experience. This project demonstrates that professional researchers with the adequate communication strategy, training and tracking can promote a relevant learning process and achieve a social impact in different audiences
  •  
5.
  • Martorell, José Antonio Gordillo, et al. (author)
  • The Infinite Learning Chain. Flipped Professional Labs for Learning and Knowledge Co-Creation
  • 2019
  • In: Open Education Studies. - : Walter de Gruyter. - 2544-7831. ; 1, s. 151-176
  • Journal article (peer-reviewed)abstract
    • Nowadays universities and other classical research institutions are changing their role in knowledge creation. In general terms we can characterize this transition as the path from "Closed Science"to "Open Science"as a part of a deeper and structural phenomenon known as "knowledge democratization", where different stakeholders as students, makers and other tech and science enthusiasts are able to create knowledge learning from the researchers and cooperating with them. In this process, science engagement of these new actors is a key point to stimulate their creativity, get some important research skills learnt directly from the researchers and be able to apply these skills teaching others in a continuous "learning chain". In this article, we introduce some main features and preliminary results of an experiment called "The infinite learning chain"done in cooperation with Arduino, focused on sensing science and based in a real research project of Group of Atmospheric Science (GAS) called Luleå Environmental Monitoring Stations (LEMS). We debate some interesting questions related to the impact of the format in terms of science engagement, STEM skills acquisition and cooperative learning involvement. We used as "learning ecosystem"a professional Lab, the INSPIRE Lab a complete multidisciplinary facility for space and environmental research and exploration.
  •  
6.
  • Mathanlal, Thasshwin, et al. (author)
  • ATMO-Vent : an adapted breathing atmosphere for COVID-19 patients
  • 2020
  • In: HardwareX. - : Elsevier. - 2468-0672. ; 8
  • Journal article (peer-reviewed)abstract
    • The ongoing worldwide pandemic of coronavirus disease 2019 (COVID-19), has been one of the most significant challenges to humankind in centuries. The extremely contagious nature of the SARS-CoV-2 virus has put forth an immense pressure on the health sector. In order to mitigate the stress on the healthcare systems especially to battle the crisis of mechanical ventilators, we have designed a modular, and robust DIY ventilator, ATMO-Vent (Atmospheric Mixture Optimization Ventilator) which can be fully mounted within two days by two operators. The ATMO-Vent has been designed using low-cost, robust, Commercial Off The Shelf (COTS) components, with many features comparable to a full-fledged ventilator. ATMO-Vent has been designed based on the United Kingdom Medicines & Healthcare products Regulatory Agency (UK-MHRA) guidelines for Rapidly Manufactured Ventilator System (RMVS), yet scalable to the specific requirements of different countries. ATMO-Vent is capable of adjusting the Fraction of Inspiratory Oxygen (FiO2) levels, Tidal Volume (TV), frequency of breaths, Inspiratory/Expiratory ratio (I/E), Peak Inspiratory Pressure (PIP) and Positive End-Expiratory Pressure (PEEP). ATMO-Vent can operate in two modes - Continuous Mandatory Ventilation (CMV) using Volume-Controlled Ventilation (VCV) and in Assisted Control (AC) mode with pressure triggered by the patient. ATMO-Vent has undergone rigorous testing and qualifies under Class B Electric and Magnetic Compatibility (EMC) requirements of EN 55011 CISPR 11 standards.
  •  
7.
  • Mathanlal, Thasshwin (author)
  • Development of robotic instruments and techniques for space and astrobiological exploration and research
  • 2020
  • Doctoral thesis (other academic/artistic)abstract
    • Astrobiology is the study of life in the universe. The search for life beyond the Earth requires an understanding of the signatures of life, and of the nature of the environments that support it. Space exploration is a crucial factor to achieve these goals. The PhD thesis focusses on developing novel techniques for astrobiological and Earth exploration. It includes instrument prototyping, validation and calibration of a flight-ready space in-strument.This thesis explains the development of four instruments namely 1) KORE – a robotic exploration rover designed for subsurface analogue planetary explorations; 2) InXSpace3D – a 3D mapping payload for biogeomorphological analysis based on a com-mercial RGB-D camera and an open-source algorithm; 3) S3ME2 – a self-sustainable environmental monitoring station capable of withstanding harsh environments on Earth; and 4) PACKMAN – a space weather monitoring instrument. The instruments are devoted to: 1) the spatial exploration and characterization (KORE and InXSpace3D) of a potentially habitable environment and 2) the monitorization of the rapidly vary-ing environmental variables that may affect life (S3ME2 and PACKMAN), its evolution and preservation. The instruments are developed according to the Technology Readiness Level (TRL) Ladder and a cost and time effective methodology which maximizes the use of Commercial Off-The-Shelf (COTS) components and Open source software.The thesis also discusses the bioburden sterilization and control procedure of some of the sensors on the flight-ready space Instrument HABIT (HabitAbility: Brines, Irradi-ation and Temperature), that will be part of the ExoMars 2022 mission. Again, a COTS and an open source software-based approach has been used in these higher TRL level procedures. This demonstrates the fact that such an engineering approach can benefit the scientific community by developing instruments with a minimal investment of time and resources without compromising the scientific quality of the instrument. The thesis concludes with the adaptation of the research methodology to adapt space technologies that are applicable in space for human support systems to address an emerging problem on Earth: ATMO-Vent, a low-cost COTS-based ventilator that produces an adapted breathable atmosphere for COVID-19 patients.During the PhD thesis, the author has published five peer-reviewed journal papers, two peer-reviewed conference abstracts and two co-authored peer-reviewed journal pa-pers. The first authored papers and conference abstracts have been appended to the Part-II of the thesis.
  •  
8.
  • Mathanlal, Thasshwin, et al. (author)
  • Implementing Bioburden reduction and control on the deliquescent hydrogel of the ExoMars, HABIT Instrument
  • 2019
  • In: IAC-19. - : International Astronautical Federation.
  • Conference paper (peer-reviewed)abstract
    • The HABIT (HabitAbility, Brines, Irradiation and Temperature) instrument, will be the first Swedish Instrument that will land on the surface of Mars as a part of the ExoMars 2020 mission (ESA/IKI). It is also the first European ISRU (In-situ Resource Utilization) instrument capable of producing liquid water on Mars extracting atmospheric water vapor using salt deliquescence to form a stable liquid brine. HABIT also will study current habitability conditions on Mars investigating the air and surface thermal ranges and UV (Ultra-Violet) irradiance. The BOTTLE (Brine Observation Transition To Liquid Experiment) is the container element of HABIT with four independent cells housing deliquescent salts, which have been found on Mars, exposing them to the Martian atmosphere. In order to prevent capillarity of deliquescent or hydrated salts a mixture of deliquescent salts with Super Absorbent Polymer (SAP) based on polyacrylamide is utilized. This mixture has deliquescent and hydrogel properties that can be reused by applying a thermal cycle, complying thus with the purpose of the instrument. A Poly-Tetra Fluro Ethylene (PTFE) coated nylon HEPA (High Efficiency Particulate Air) filter stands as a physical barrier allowing interaction between the gaseous molecules of the Martian atmosphere and the salt mixtures, and at the same time prevents the passage of any biological contamination from the cells to the outside or vice-versa. In addition to the physical barrier, a strict bioburden reduction and analysis is made on the contained salt mixtures adhering to the European Cooperation for Space Standardization protocol of Microbial examination of flight hardware (ECSS-Q-ST-70-55C). The deliquescent salts and the SAP products need to be properly treated independently to adhere to the planetary protection protocols. In this paper, we have described the bioburden reduction process utilized to sterilize the salt mixtures in BOTTLE and the assays adopted to validate the sterilization. The sterilization process adopted involves ultra-fine filtration and Dry Heat Microbial Reduction (DHMR) of the deliquescent salts and the SAP respectively. The performance of SAP after DHMR is validated to ensure its working efficiency after sterilization. A standard swab assay and a pour-plate assay are adopted in the validation process and a comparison is made between them to determine the best assay to be applied for future space hardware utilizing such salt mixtures for planetary investigation and ISRU. The demonstrating of the compatibility of these products with the processes commonly required for space applications has implications for the future explorationof Mars.
  •  
9.
  • Mathanlal, Thasshwin, et al. (author)
  • Implementing bioburden reduction and control on the deliquescent hydrogel of the HABIT/ExoMars 2020 instrument
  • 2020
  • In: Acta Astronautica. - : Elsevier. - 0094-5765 .- 1879-2030. ; 173, s. 232-239
  • Journal article (peer-reviewed)abstract
    • The HabitAbility: Brines, Irradiation and Temperature (HABIT) instrument will be part of the ExoMars 2020 mission (ESA/Roscosmos) and will be the first European In-situ Resource Utilization (ISRU) instrument capable of producing liquid water on Mars. HABIT is composed by two modules: Environmental Package (EnvPack) and Brine Observation Transition To Liquid Experiment (BOTTLE). EnvPack will help to study the current habitability conditions on Mars investigating the air and surface thermal ranges and Ultraviolet (UV) irradiance; and BOTTLE is a container with four independent vessels housing deliquescent salts, which are known to be present on Mars, where the liquid water will be produced after deliquescence. In order to prevent capillarity of deliquescent or hydrated salts, a mixture of deliquescent salts with Super Absorbent Polymer (SAP) based on polyacrylamide is utilized. This mixture has deliquescent and hydrogel properties and can be reused by applying a thermal cycle, complying thus with the purpose of the instrument. A High Efficiency Particulate Air (HEPA) grade filter made of polytetrafluroethylene (PTFE) porous membrane sandwiched between spunbounded non-woven fabric stands as a physical barrier allowing interaction between the gaseous molecules of the Martian atmosphere and the salt mixtures, and at the same time preventing the passage of any potential biological contamination from the cells to the outside or vice-versa. In addition to the physical barrier, a strict bioburden reduction and analysis procedure is applied to the hardware and the contained salt mixtures adhering to the European Cooperation for Space Standardization protocol of microbial examination of flight hardware (ECSS-Q-ST-70-55C). The deliquescent salts and the SAP products need to be properly treated independently to adhere to the planetary protection protocols. In this manuscript, we describe the bioburden reduction process utilized to sterilize the salt mixtures in BOTTLE and the assays adopted to validate the sterilization. We also describe the construction of a low-cost, portable ISO 7 cleanroom tent, exclusively designed for planetary protection tests. The sterilization process involves Dry Heat Microbial Reduction (DHMR) of the deliquescent salts and the SAP mixtures. The performance of SAP after DHMR is validated to ensure its working efficiency after sterilization. A slightly modified version of the standard swab assay is used in the validation process and a comparison is made between samples exposed to a thermal shock treatment and those without thermal shock, to determine the best assay to be applied for future space hardware utilizing such salt mixtures for planetary investigation and In-Situ Resource Utilization (ISRU). The demonstration of the compatibility of these products with the processes commonly required for space applications has implications for the future exploration of Mars.
  •  
10.
  • Mathanlal, Thasshwin, et al. (author)
  • PACKMAN – A portable instrument to investigate space weather
  • 2021
  • In: HardwareX. - : Elsevier. - 2468-0672. ; 9
  • Journal article (peer-reviewed)abstract
    • PACKMAN (PArticle Counter k-index Magnetic ANomaly) is an autonomous, light and robust space weather instrument for operation within the subsurface, surface and atmosphere (as payload in stratospheric balloons) of the Earth. It has been designed using Commercial Off-The-Shelf (COTS) components to reduce the cost of each unit and to allow to have multiple units monitoring simultaneously at different sites and also incorporate an open-access citizen science approach. The hardware-core of each PACKMAN units, weights around 600 g and consumes about 500 mA of current at 12 V. PACKMAN has been deployed at multiple latitudes and altitudes ranging from stratospheric heights (corroborating its TRL8 maturity) to subsurface depths of around 1 km. The data from PACKMAN have been compared with the state-of-the-art ground-based observatories, and satellites and scientific observations have been documented. A 3-D network of PACKMAN units operating continuously around the globe, from the subsurface to the stratosphere, would help to improve the understanding of the space weather phenomena, and its implications on the climate and infrastructures. PACKMAN is also an excellent tool for education and outreach. This article outlines the building instructions of two types of PACKMAN units: PACKMAN-S for ground-based measurements and PACKMAN-B for stratospheric measurements aboard high-altitude balloons.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view