SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Martin Torres Javier) ;pers:(Mier Maria Paz Zorzano)"

Sökning: WFRF:(Martin Torres Javier) > Mier Maria Paz Zorzano

  • Resultat 1-10 av 50
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Delgado-Bonal, Alfonso, et al. (författare)
  • Solar and wind exergy potentials for Mars
  • 2016
  • Ingår i: Energy. - : Elsevier BV. - 0360-5442 .- 1873-6785. ; 102, s. 550-558
  • Tidskriftsartikel (refereegranskat)abstract
    • The energy requirements of the planetary exploration spacecrafts constrain the lifetime of the missions, their mobility and capabilities, and the number of instruments onboard. They are limiting factors in planetary exploration. Several missions to the surface of Mars have proven the feasibility and success of solar panels as energy source. The analysis of the exergy efficiency of the solar radiation has been carried out successfully on Earth, however, to date, there is not an extensive research regarding the thermodynamic exergy efficiency of in-situ renewable energy sources on Mars. In this paper, we analyse the obtainable energy (exergy) from solar radiation under Martian conditions. For this analysis we have used the surface environmental variables on Mars measured in-situ by the Rover Environmental Monitoring Station onboard the Curiosity rover and from satellite by the Thermal Emission Spectrometer instrument onboard the Mars Global Surveyor satellite mission. We evaluate the exergy efficiency from solar radiation on a global spatial scale using orbital data for a Martian year; and in a one single location in Mars (the Gale crater) but with an appreciable temporal resolution (1 h). Also, we analyse the wind energy as an alternative source of energy for Mars exploration and compare the results with those obtained on Earth. We study the viability of solar and wind energy station for the future exploration of Mars, showing that a small square solar cell of 0.30 m length could maintain a meteorological station on Mars. We conclude that the low density of the atmosphere of Mars is responsible of the low thermal exergy efficiency of solar panels. It also makes the use of wind energy uneffective. Finally, we provide insights for the development of new solar cells on Mars.
  •  
2.
  •  
3.
  • Nazarious, Miracle Israel, 1992- (författare)
  • Scientific Instruments to Facilitate the Human Exploration of Mars
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This PhD thesis describes, from an engineering perspective, some of the preliminary steps that need to be implemented to facilitate the human exploration of Mars. It focuses on the development of a set of novel scientific or technology demonstrator instruments. The engineering problem starts with a conceptual idea and the definition of individual functional requirements, that may be related to scientific or technological objectives. To solve this problem, an unique approach adapted during this thesis, allowed for designing and building efficiently, testing and refining the instruments in multiple iterations using simple techniques like 3-D printing, breadboard prototyping and low-cost commercial off the shelf (COTS) components. This approach reduces the cost and facilitates the accessibility of space instrument design and testing to a broader community. The steps include demonstrating the operability of the concept with prototypes, calibrating the responses and validating their operation in representative environments, thereby raising the technology readiness level (TRL) of the instrument with a lower investment in time and resources than traditional approaches that use specialized components and fabrica-tion techniques.The thesis provides a detailed description of the design and development process, and discusses the calibration and validation results of four different instruments, namely: 1) Brine Observation Transition To Liquid Experiment (BOTTLE) as a part of HabitAbil-ity: Brines, Irradiation and Temperature (HABIT) instrument onboard the ESA/IKI’s ExoMars 2022 Surface Platform Kazachok, for investigating the surface environmen-tal conditions and demonstrating the capability of salts to absorb water on Mars, 2) Metabolt, a small-sized portable incubator to monitor the behaviour of the microbiome in soils, which will be a critical element of future greenhouses on Mars or the Moon, 3) Methanox, an in-situ resource utilization demonstrator for converting local resources on Mars and producing methane and ammonia as space fuel, and 4) PRessure Optimized PowEred Respirator (PROPER), a wearable cleanroom developed for protecting the hu-mans against biological pathogens, showing the direct applicability of this research to solve Earth-based problems. During the final phase of the PhD thesis, the world suffered the COVID-19 pandemic. This challenge provided an opportunity to test the approach presented in this thesis and inspired the development of this equipment, and may also be of relevance to protect from biological cross-contamination in planetary habitats and laboratories while handling local regolith materials and samples on Mars.This work also highlights the calibration of the HABIT Flight Model (FM) in the cleanroom of Omnisys Instruments AB, Sweden, defines the retrieval models that will be used during ExoMars 2022 mission operations and data archiving in the Planetary Science Archive (PSA). Parts of this thesis were already published in the form of peer-reviewed journal articles and conference abstracts.
  •  
4.
  • Ullán, Aurora, et al. (författare)
  • Analysis of wind-induced dynamic pressure fluctuations during one and a half Martian years at Gale Crater
  • 2017
  • Ingår i: Icarus. - : Elsevier. - 0019-1035 .- 1090-2643. ; 288, s. 78-87
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rover Environmental Monitoring Station (REMS) instrument on-board the Mars Science Laboratory (MSL) has acquired unprecedented measurements of key environmental variables at the base of Gale Crater. The pressure measured by REMS shows modulations with a very structured pattern of short-time scale (of the order of seconds to several minutes) mild fluctuations (typically up to 0.2 Pa at daytime and 1 Pa at night-time). These dynamic pressure oscillations are consistent with wind, air and ground temperature modulations measured simultaneously by REMS. We detect the signals of a repetitive pattern of upslope/downslope winds, with maximal speeds of about 21 m/s, associated with thermal changes in the air and surface temperatures, that are initiated after sunset and finish with sunrise proving that Gale, a 4.5 km deep impact crater, is an active Aeolian environment. At nighttime topographic slope winds are intense with maximal activity from 17:00 through 23:00 Local Mean Solar Time, and simultaneous changes of surface temperature are detected. During the day, the wind modulations are related to convection of the planetary boundary layer, winds are softer with maximum wind speed of about 14 m/s. The ground temperature is modulated by the forced convection of winds, with amplitudes between 0.2 K and 0.5 K, and the air temperatures fluctuate with amplitudes of about 2 K. The analysis of more than one and a half Martian years indicates the year-to-year repeatability of these environmental phenomena. The wind pattern minimizes at the beginning of the south hemisphere winter (Ls 90) season and maximizes during late spring and early summer (Ls 270). The procedure that we present here is a useful tool to investigate in a semi-quantitative way the winds by: i) filling both seasonal and diurnal gaps where wind measurements do not exist, ii) providing an alternative way for comparisons through different measuring principia and, iii) filling the gap of observation of short time-wind variability, where the REMS wind-sensor is blind
  •  
5.
  • Azua-Bustos, Armando, et al. (författare)
  • Aeolian transport of viable microbial life across the Atacama Desert, Chile : Implications for Mars
  • 2019
  • Ingår i: Scientific Reports. - : Springer. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we inspect whether microbial life may disperse using dust transported by wind in the Atacama Desert in northern Chile, a well-known Mars analog model. By setting a simple experiment across the hyperarid core of the Atacama we found that a number of viable bacteria and fungi are in fact able to traverse the driest and most UV irradiated desert on Earth unscathed using wind-transported dust, particularly in the later afternoon hours. This finding suggests that microbial life on Mars, extant or past, may have similarly benefited from aeolian transport to move across the planet and find suitable habitats to thrive and evolve.
  •  
6.
  • Bhardwaj, Anshuman, et al. (författare)
  • Are Slope Streaks Indicative of Global‐Scale Aqueous Processes on Contemporary Mars?
  • 2019
  • Ingår i: Reviews of geophysics. - : American Geophysical Union (AGU). - 8755-1209 .- 1944-9208. ; 57:1, s. 48-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Slope streaks are prevalent and intriguing dark albedo surface features on contemporary Mars. Slope streaks are readily observed in the equatorial and subequatorial dusty regolith regions with low thermal inertia. They gradually fade over decadal timescales. The proposed mechanisms for their formation vary widely based on several physicochemical and geomorphological explanations. The scientific community is divided in proposing both dry and wet mechanisms for the formation of slope streaks. Here we perform a systematic evaluation of the literature for these wet and dry mechanisms. We discuss the probable constraints on the various proposed mechanisms and provide perspectives on the plausible process driving global‐scale slope streak formation on contemporary Mars. Although per our understanding, a thorough consideration of the global distribution of slope streaks, their morphology and topography, flow characteristics, physicochemical and atmospheric coincidences, and terrestrial analogies weighs more in favor of several wet mechanisms, we acknowledge that such wet mechanisms cannot explain all the reported morphological and terrain variations of slope streaks. Thus, we suggest that explanations considering both dry and wet processes can more holistically describe all the observed morphological variations among slope streaks. We further acknowledge the constraints on the resolutions of remote sensing data and on our understanding of the Martian mineralogy, climate, and atmosphere and recommend continuous investigations in this direction using future remote sensing acquisitions and simulations. In this regard, finding more wet and dry terrestrial analogs for Martian slope streaks and studying them at high spatiotemporal resolutions can greatly improve our understanding.
  •  
7.
  • Bhardwaj, Anshuman, et al. (författare)
  • Discovery of recurring slope lineae candidates in Mawrth Vallis, Mars
  • 2019
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Several interpretations of recurring slope lineae (RSL) have related RSL to the potential presence of transient liquid water on Mars. Such probable signs of liquid water have implications for Mars exploration in terms of rover safety, planetary protection during rover operations, and the current habitability of the planet. Mawrth Vallis has always been a prime target to be considered for Mars rover missions due to its rich mineralogy. Most recently, Mawrth Vallis was one of the two final candidates selected by the European Space Agency as a landing site for the ExoMars 2020 mission. Therefore, all surface features and landforms in Mawrth Vallis that may be of special interest in terms of scientific goals, rover safety, and operations must be scrutinised to better assess it for future Mars missions. Here, we report on the initial detection of RSL candidates in two craters of Mawrth Vallis. The new sightings were made outside of established RSL regions and further prompt the inclusion of a new geographical region within the RSL candidate group. Our inferences on the RSL candidates are based on several morphological and geophysical evidences and analogies: (i) the dimensions of the RSL candidates are consistent with confirmed mid-latitude RSL; (ii) albedo and thermal inertia values are comparable to those of other mid-latitude RSL sites; and (iii) features are found in a summer season image and on the steep and warmest slopes. These results denote the plausible presence of transient liquid brines close to the previously proposed landing ellipse of the ExoMars rover, rendering this site particularly relevant to the search of life. Further investigations of Mawrth Vallis carried out at higher spatial and temporal resolutions are needed to identify more of such features at local scales to maximize the scientific return from the future Mars rovers, to prevent probable biological contamination during rover operations, to evade damage to rover components as brines can be highly corrosive, and to quantify the ability of the regolith at mid-latitudes to capture atmospheric water which is relevant for in-situ-resource utilization.
  •  
8.
  • Bhardwaj, Anshuman, et al. (författare)
  • Distribution and Morphologies of Transverse Aeolian Ridges in ExoMars 2020 Rover Landing Site
  • 2019
  • Ingår i: Remote Sensing. - : MDPI. - 2072-4292. ; 11:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Aeolian processes are believed to play a major role in the landscape evolution of Mars. Investigations on Martian aeolian landforms such as ripples, transverse aeolian ridges (TARs), and dunes, and aeolian sediment flux measurements are important to enhance our understanding of past and present wind regimes, the ongoing dust cycle, landscape evolution, and geochemistry. These aeolian bedforms are often comprised of loose sand and sharply undulating topography and thus pose a threat to mobility and maneuvers of Mars rovers. Here we present a first-hand account of the distribution, morphologies, and morphometrics of TARs in Oxia Planum, the recently selected ExoMars 2020 Rover landing site. The gridded mapping was performed for contiguous stretches of TARs within all the landing ellipses using 57 sub-meter high resolution imaging science experiment (HiRISE) scenes. We also provide the morphological descriptions for all types of TARs present within the landing ellipses. We use HiRISE digital terrain models (DTMs) along with the images to derive morphometric information for TARs in Oxia Planum. In general, the average areal TAR coverage was found to be 5.4% (±4.9% standard deviation), increasing from west to east within the landing ellipses. We report the average TAR morphometrics in the form of crest–ridge width (131.1 ± 106.2 m), down-wind TAR length (17.6 ± 10.1 m), wavelength (37.3 ± 11.6 m), plan view aspect ratio (7.1 ± 2.3), inter-bedform spacing (2.1 ± 1.1), slope (10.6° ± 6.1°), predominant orientations (NE-SW and E-W), and height (1.2 ± 0.8 m). While simple TARs are predominant, we report other TAR morphologies such as forked TAR, wavy TAR with associated smaller secondary ripples, barchan-like TAR, networked TAR, and mini-TARs from the region. Our results can help in planning the rover traverses in terms of both safe passage and scientific returns favoring aeolian research, particularly improving our understanding of TARs.
  •  
9.
  • Bhardwaj, Anshuman, et al. (författare)
  • Martian slope streaks as plausible indicators of transient water activity
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Slope streaks have been frequently observed in the equatorial, low thermal inertia and dusty regions of Mars. The reason behind their formation remains unclear with proposed hypotheses for both dry and wet mechanisms. Here, we report an up-to-date distribution and morphometric investigation of Martian slope streaks. We find: (i) a remarkable coexistence of the slope streak distribution with the regions on Mars with high abundances of water-equivalent hydrogen, chlorine, and iron; (ii) favourable thermodynamic conditions for transient deliquescence and brine development in the slope streak regions; (iii) a significant concurrence of slope streak distribution with the regions of enhanced atmospheric water vapour concentration, thus suggestive of a present-day regolith-atmosphere water cycle; and (iv) terrain preferences and flow patterns supporting a wet mechanism for slope streaks. These results suggest a strong local regolith-atmosphere water coupling in the slope streak regions that leads to the formation of these fluidised features. Our conclusions can have profound astrobiological, habitability, environmental, and planetary protection implications
  •  
10.
  • Bhardwaj, Anshuman, et al. (författare)
  • UAV Imaging of a Martian Brine Analogue Environment in a Fluvio-Aeolian Setting
  • 2019
  • Ingår i: Remote Sensing. - : MDPI. - 2072-4292. ; 11:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding extraterrestrial environments and landforms through remote sensing and terrestrial analogy has gained momentum in recent years due to advances in remote sensing platforms, sensors, and computing efficiency. The seasonal brines of the largest salt plateau on Earth in Salar de Uyuni (Bolivian Altiplano) have been inadequately studied for their localized hydrodynamics and the regolith volume transport across the freshwater-brine mixing zones. These brines have recently been projected as a new analogue site for the proposed Martian brines, such as recurring slope lineae (RSL) and slope streaks. The Martian brines have been postulated to be the result of ongoing deliquescence-based salt-hydrology processes on contemporary Mars, similar to the studied Salar de Uyuni brines. As part of a field-site campaign during the cold and dry season in the latter half of August 2017, we deployed an unmanned aerial vehicle (UAV) at two sites of the Salar de Uyuni to perform detailed terrain mapping and geomorphometry. We generated high-resolution (2 cm/pixel) photogrammetric digital elevation models (DEMs) for observing and quantifying short-term terrain changes within the brines and their surroundings. The achieved co-registration for the temporal DEMs was considerably high, from which precise inferences regarding the terrain dynamics were derived. The observed average rate of bottom surface elevation change for brines was ~1.02 mm/day, with localized signs of erosion and deposition. Additionally, we observed short-term changes in the adjacent geomorphology and salt cracks. We conclude that the transferred regolith volume via such brines can be extremely low, well within the resolution limits of the remote sensors that are currently orbiting Mars, thereby making it difficult to resolve the topographic relief and terrain perturbations that are produced by such flows on Mars. Thus, the absence of observable erosion and deposition features within or around most of the proposed Martian RSL and slope streaks cannot be used to dismiss the possibility of fluidized flow within these features
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 50
Typ av publikation
tidskriftsartikel (35)
konferensbidrag (9)
doktorsavhandling (4)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (39)
övrigt vetenskapligt/konstnärligt (10)
populärvet., debatt m.m. (1)
Författare/redaktör
Martin-Torres, Javie ... (48)
Zorzano Mier, María- ... (44)
Bhardwaj, Anshuman (12)
Sam, Lydia (7)
Soria-Salinas, Álvar ... (7)
Vakkada Ramachandran ... (7)
visa fler...
Mathanlal, Thasshwin (6)
Fonseca, Ricardo (5)
Singh, Shaktiman (3)
Smith, M. D. (3)
Cockell, Charles S. (3)
Rapin, W. (3)
Conrad, Pamela G. (3)
Fabre, C. (2)
Johnson, J (2)
Forni, O. (2)
Shekhar, Mayank (2)
Anderson, R (2)
Gasnault, O. (2)
González-Silva, Carl ... (2)
Fairén, Alberto G. (2)
Mangold, N. (2)
Smith, C. L. (2)
Berger, G (2)
Ramírez Luque, Juan ... (2)
Clark, B (2)
Cousin, A. (2)
Le Mouélic, S. (2)
Maurice, S. (2)
Newman, C.E. (2)
Wiens, R.C. (2)
Stevens, Adam (2)
Meslin, P.Y. (2)
Ollila, A. (2)
Lasue, J. (2)
Sautter, V. (2)
Newsom, H. (2)
Blaney, D. (2)
Lanza, N. (2)
Goetz, W. (2)
Vázquez-Martín, Sand ... (2)
Mendaza de Cal, Mari ... (2)
Mahaffy, Paul R. (2)
Franz, Heather B. (2)
Malespin, Charles A. (2)
McKay, Christopher P ... (2)
Navarro‐González, Ra ... (2)
Vago, Jorge L. (2)
Guzewich, Scott D. (2)
visa färre...
Lärosäte
Luleå tekniska universitet (50)
Malmö universitet (1)
Språk
Engelska (49)
Spanska (1)
Forskningsämne (UKÄ/SCB)
Teknik (45)
Naturvetenskap (16)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy