SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Martinelli P) "

Sökning: WFRF:(Martinelli P)

  • Resultat 1-10 av 96
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2017
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Ade, P. A. R., et al. (författare)
  • Planck 2015 results XIV. Dark energy and modified gravity
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well as principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints and find that it has to be below similar to 2% (at 95% confidence) of the critical density, even when forced to play a role for z < 50 only. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories, and coupled DE. In addition to the latest Planck data, for our main analyses, we use background constraints from baryonic acoustic oscillations, type-Ia supernovae, and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations (expansion of the equation of state, early DE, general potentials in minimally-coupled scalar fields or principal component analysis) are in agreement with ACDM. When testing models that also change perturbations (even when the background is fixed to ACDM), some tensions appear in a few scenarios: the maximum one found is similar to 2 sigma for Planck TT + lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension increases to, at most, 3 sigma when external data sets are included. It however disappears when including CMB lensing.
  •  
7.
  • Aghanim, N., et al. (författare)
  • Planck 2018 results I. Overview and the cosmological legacy of Planck
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Space Agency's Planck satellite, which was dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013, producing deep, high-resolution, all-sky maps in nine frequency bands from 30 to 857 GHz. This paper presents the cosmological legacy of Planck, which currently provides our strongest constraints on the parameters of the standard cosmological model and some of the tightest limits available on deviations from that model. The 6-parameter Lambda CDM model continues to provide an excellent fit to the cosmic microwave background data at high and low redshift, describing the cosmological information in over a billion map pixels with just six parameters. With 18 peaks in the temperature and polarization angular power spectra constrained well, Planck measures five of the six parameters to better than 1% (simultaneously), with the best-determined parameter (theta (*)) now known to 0.03%. We describe the multi-component sky as seen by Planck, the success of the Lambda CDM model, and the connection to lower-redshift probes of structure formation. We also give a comprehensive summary of the major changes introduced in this 2018 release. The Planck data, alone and in combination with other probes, provide stringent constraints on our models of the early Universe and the large-scale structure within which all astrophysical objects form and evolve. We discuss some lessons learned from the Planck mission, and highlight areas ripe for further experimental advances.
  •  
8.
  • Aghanim, N., et al. (författare)
  • Planck 2018 results VI. Cosmological parameters
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Tidskriftsartikel (refereegranskat)abstract
    • We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction. Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters. Improved modelling of the small-scale polarization leads to more robust constraints on many parameters, with residual modelling uncertainties estimated to affect them only at the 0.5 sigma level. We find good consistency with the standard spatially-flat 6-parameter Lambda CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted base Lambda CDM in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density Omega (c)h(2)=0.120 +/- 0.001, baryon density Omega (b)h(2)=0.0224 +/- 0.0001, scalar spectral index n(s)=0.965 +/- 0.004, and optical depth tau =0.054 +/- 0.007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits). The angular acoustic scale is measured to 0.03% precision, with 100 theta (*)=1.0411 +/- 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-Lambda CDM cosmology, the inferred (model-dependent) late-Universe parameters are: Hubble constant H-0=(67.4 +/- 0.5) km s(-1) Mpc(-1); matter density parameter Omega (m)=0.315 +/- 0.007; and matter fluctuation amplitude sigma (8)=0.811 +/- 0.006. We find no compelling evidence for extensions to the base-Lambda CDM model. Combining with baryon acoustic oscillation (BAO) measurements (and considering single-parameter extensions) we constrain the effective extra relativistic degrees of freedom to be N-eff=2.99 +/- 0.17, in agreement with the Standard Model prediction N-eff=3.046, and find that the neutrino mass is tightly constrained to Sigma m(nu)< 0.12 eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base CDM at over 2 sigma, which pulls some parameters that affect the lensing amplitude away from the Lambda CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. The joint constraint with BAO measurements on spatial curvature is consistent with a flat universe, Omega (K)=0.001 +/- 0.002. Also combining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w(0)=-1.03 +/- 0.03, consistent with a cosmological constant. We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r(0.002)< 0.06. Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-CDM cosmology are in excellent agreement with observations. The Planck base-Lambda CDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey's combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 3.6 sigma, tension with local measurements of the Hubble constant (which prefer a higher value). Simple model extensions that can partially resolve these tensions are not favoured by the Planck data.
  •  
9.
  •  
10.
  • Reimerdes, H., et al. (författare)
  • Overview of the TCV tokamak experimental programme
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The tokamak a configuration variable (TCV) continues to leverage its unique shaping capabilities, flexible heating systems and modern control system to address critical issues in preparation for ITER and a fusion power plant. For the 2019-20 campaign its configurational flexibility has been enhanced with the installation of removable divertor gas baffles, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. The gas baffles reduce coupling between the divertor and the main chamber and allow for detailed investigations on the role of fuelling in general and, together with upgraded boundary diagnostics, test divertor and edge models in particular. The increased heating capabilities broaden the operational regime to include T (e)/T (i) similar to 1 and have stimulated refocussing studies from L-mode to H-mode across a range of research topics. ITER baseline parameters were reached in type-I ELMy H-modes and alternative regimes with 'small' (or no) ELMs explored. Most prominently, negative triangularity was investigated in detail and confirmed as an attractive scenario with H-mode level core confinement but an L-mode edge. Emphasis was also placed on control, where an increased number of observers, actuators and control solutions became available and are now integrated into a generic control framework as will be needed in future devices. The quantity and quality of results of the 2019-20 TCV campaign are a testament to its successful integration within the European research effort alongside a vibrant domestic programme and international collaborations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 96
Typ av publikation
tidskriftsartikel (84)
konferensbidrag (8)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (85)
övrigt vetenskapligt/konstnärligt (10)
Författare/redaktör
Comi, G (17)
Martinelli, P (12)
Hillert, J (11)
Olsson, T (11)
Esposito, F (11)
Martinelli, G (11)
visa fler...
Mur, A (10)
Melander, Olle (10)
Lindgren, S (10)
Sansone, M (10)
Tibaldi, C (10)
Benedetto, C (10)
Samani, Nilesh J. (10)
Giaquinto, C (9)
Bohlin, AB (9)
De Maria, A (9)
De Rossi, A (9)
Levy, J (9)
Deloukas, Panos (9)
Kreyenbroek, M (9)
Hainaut, M (9)
Barlow, P (9)
Gotta, C (9)
Paya, A (9)
Coll, O (9)
Fortuny, C (9)
Savasi, V (9)
Vigano, A (9)
Valerius, NH (9)
Rader, Daniel J. (9)
Martinelli-Boneschi, ... (8)
Mok, J (8)
Pena, JM (8)
Garcia, JG (8)
Lopez, JRA (8)
Asensi-Botet, F (8)
Otero, MC (8)
Boer, K (8)
Belfrage, E (8)
Lopez-Vilchez, MA (8)
Carreras, R (8)
Taylor, GP (8)
Penn, Z (8)
Buffolano, W (8)
Niemiec, T (8)
Dubois, B (8)
Harbo, HF (8)
Celius, EG (8)
Comabella, M (8)
Montalban, X (8)
visa färre...
Lärosäte
Karolinska Institutet (61)
Uppsala universitet (15)
Lunds universitet (13)
Göteborgs universitet (8)
Chalmers tekniska högskola (5)
Umeå universitet (4)
visa fler...
Stockholms universitet (4)
Kungliga Tekniska Högskolan (2)
RISE (2)
Luleå tekniska universitet (1)
Mittuniversitetet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (96)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (26)
Naturvetenskap (12)
Teknik (2)
Lantbruksvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy