SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Martinsson Johan) ;pers:(Pagels Joakim)"

Sökning: WFRF:(Martinsson Johan) > Pagels Joakim

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlberg, Erik, et al. (författare)
  • "Vi klimatforskare stödjer Greta och skolungdomarna"
  • 2019
  • Ingår i: Dagens nyheter (DN debatt). - 1101-2447.
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • DN DEBATT 15/3. Sedan industrialiseringens början har vi använt omkring fyra femtedelar av den mängd fossilt kol som får förbrännas för att vi ska klara Parisavtalet. Vi har bara en femtedel kvar och det är bråttom att kraftigt reducera utsläppen. Det har Greta Thunberg och de strejkande ungdomarna förstått. Därför stödjer vi deras krav, skriver 270 klimatforskare.
  •  
2.
  • Török, Sandra, et al. (författare)
  • Investigation of the absorption Ångström exponent and its relation to physicochemical properties for mini-CAST soot
  • 2018
  • Ingår i: Aerosol Science and Technology. - : Informa UK Limited. - 0278-6826 .- 1521-7388. ; 52:7, s. 757-767
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, a mini-CAST soot generator was used to produce soot with different optical and physicochemical characteristics. Absorption Ångström exponents (AAE) expressing the absorption wavelength dependence were assessed by multiwavelength in-situ and filter-based (aethalometer) laser extinction. The two optical techniques showed good agreement. For the chosen mini-CAST operating conditions, AAEs between 1 and 3.5 were found. Soot with high mass-fractions of organic carbon (OC) and pyrolytic carbon (PC) determined with thermal optical analysis were associated with AAEs significantly higher than 1. Heating to 250 and 500°C removed the majority of polycyclic aromatic hydrocarbons. However, the thermal-optical analysis revealed that OC and PC were abundant in the soot with AAE > 2 also after heating the aerosol. Analysis of mass absorption cross section ratios for elemental carbon and OC indicated that elevated AAEs also after heating to 500°C could be related to persistent OC and PC components and/or the refractory soot. By comparing the mini-CAST soot optical properties with soot properties derived from in-situ extinction measurements in a premixed flame, mini-CAST soot with a higher AAE could be identified as less mature soot.
  •  
3.
  •  
4.
  • Eriksson, Axel, et al. (författare)
  • Diesel soot aging in urban plumes within hours under cold dark and humid conditions
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322.
  • Tidskriftsartikel (refereegranskat)abstract
    • Fresh and aged diesel soot particles have different impacts on climate and human health. While fresh diesel soot particles are highly aspherical and non-hygroscopic, aged particles are spherical and hygroscopic. Aging and its effect on water uptake also controls the dispersion of diesel soot in the atmosphere. Understanding the timescales on which diesel soot ages in the atmosphere is thus important, yet knowledge thereof is lacking. We show that under cold, dark and humid conditions the atmospheric transformation from fresh to aged soot occurs on a timescale of less than five hours. Under dry conditions in the laboratory, diesel soot transformation is much less efficient. While photochemistry drives soot aging, our data show it is not always a limiting factor. Field observations together with aerosol process model simulations show that the rapid ambient diesel soot aging in urban plumes is caused by coupled ammonium nitrate formation and water uptake.
  •  
5.
  •  
6.
  • Hedmer, Maria, et al. (författare)
  • Real-Time Emission and Exposure Measurements of Multi-walled Carbon Nanotubes during Production, Power Sawing, and Testing of Epoxy-Based Nanocomposites
  • 2022
  • Ingår i: Annals of Work Exposures and Health. - : Oxford University Press (OUP). - 2398-7308 .- 2398-7316. ; 66:7, s. 878-894
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of manufactured nanomaterials is increasing globally. Although multi-walled carbon nanotubes (CNTs) are used in a wide range of applications, only limited data are available on emissions and exposures during CNT composite production. No exposure data using portable aethalometers in the personal breathing zone (PBZ) to monitor occupational exposure to CNTs have yet been published. The aim of this study was to characterize emissions of and exposures to CNTs during CNT composite production, sawing, and shear testing. We also investigated whether real-time aethalometer measurements of equivalent black carbon (eBC) could be used as a proxy filter sampling of elemental carbon (EC). The presence of CNTs as surface contamination in the production facility was monitored since this could contribute to airborne exposure.Methods: During CNT composite production in an industrial setting including both chemical and manufacturing laboratories, different work tasks (WTs) were studied with a combination of directreading instruments (aethalometer, aerodynamic particle sizer, condensation particle counter) and filter-based methods. Measurements were performed to monitor concentrations in the emission zone (EZ), PBZ, and background zone. The filter samples were analysed for EC and fibre concentration of CNTs using scanning electron microscopy (SEM). Additionally, surfaces in the facility were tape sampled for monitoring of CNT contamination, and analysed with SEM.Results: Clear eBC peaks were observed in the PBZ during several WTs, most clearly during open handling of CNT powder. Power sawing emitted the highest particle number concentration in the EZ of both nanoparticles and coarse particles, but no individual airborne CNTs, agglomerates, or aggregates were detected. Airborne CNTs were identified, for example, in a filter sample collected in the PBZ of a worker during mixing of CNT epoxy. The airborne CNT particles were large agglomerates which looked like porous balls in the SEM images. Significant EC exposures were found in the inhalable fraction while all respirable fractions of EC were below detection. The highest inhalable EC concentrations were detected during the composite production. No significant correlation was found between inhalable EC and eBC, most likely due to losses of large EC containing particles in the sampling lines and inside the eBC monitor. In total, 39 tape samples were collected. Surface contamination of CNTs was detected on eight surfaces in the chemical and manufacturing laboratories, mainly in the near-field zone. Elongated CNT-like features were detected in the sawdust after sawing of CNT composite.Conclusions: Characterization of a workplace producing CNT composite showed that open handling of the CNT powder during weighing and mixing of CNT powder material generated the highest particle emissions and exposures. The portable direct-reading aethalometer provided time-resolved eBC exposure data with complementary information to time-integrated EC filter samples by linking peak exposures to specific WTs. Based on the results it was not possible to conclude that eBC is a good proxy of EC. Surface contamination of CNTs was detected on several surfaces in the near-field zone in the facility. This contamination could potentially be resuspended into the workplace air, and may cause secondary inhalation exposure.
  •  
7.
  • Lovén, Karin, et al. (författare)
  • Emissions and exposures of graphene nanomaterials, titanium dioxide nanofibers, and nanoparticles during down-stream industrial handling
  • 2021
  • Ingår i: Journal of Exposure Science & Environmental Epidemiology. - : Springer Science and Business Media LLC. - 1559-064X .- 1559-0631. ; 31:4, s. 736-752
  • Tidskriftsartikel (refereegranskat)abstract
    • Today, engineered nanomaterials are frequently used. Nanosized titanium dioxide (TiO2) has been extensively used for many years and graphene is one type of emerging nanomaterial. Occupational airborne exposures to engineered nanomaterials are important to ensure safe workplaces and to extend the information needed for complete risk assessments. The main aim of this study was to characterize workplace emissions and exposure of graphene nanoplatelets, graphene oxide, TiO2 nanofibers (NFs) and nanoparticles (NPs) during down-stream industrial handling. Surface contaminations were also investigated to assess the potential for secondary inhalation exposures. In addition, a range of different sampling and aerosol monitoring methods were used and evaluated. The results showed that powder handling, regardless of handling graphene nanoplatelets, graphene oxide, TiO2 NFs, or NPs, contributes to the highest particle emissions and exposures. However, the exposure levels were below suggested occupational exposure limits. It was also shown that a range of different methods can be used to selectively detect and quantify nanomaterials both in the air and as surface contaminations. However, to be able to make an accurate determination of which nanomaterial that has been emitted a combination of different methods, both offline and online, must be used.
  •  
8.
  •  
9.
  •  
10.
  • Malmborg, Vilhelm, et al. (författare)
  • Evolution of In-Cylinder Diesel Engine Soot and Emission Characteristics Investigated with Online Aerosol Mass Spectrometry
  • 2017
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 1520-5851 .- 0013-936X. ; 51:3, s. 1876-1885
  • Tidskriftsartikel (refereegranskat)abstract
    • To design diesel engines with low environmental impact, it is important to link health and climate-relevant soot (black carbon) emission characteristics to specific combustion conditions. The in-cylinder evolution of soot properties over the combustion cycle and as a function of exhaust gas recirculation (EGR) was investigated in a modern heavy-duty diesel engine. A novel combination of a fast gas-sampling valve and a soot particle aerosol mass spectrometer (SP-AMS) enabled online measurements of the in-cylinder soot chemistry. The results show that EGR reduced the soot formation rate. However, the late cycle soot oxidation rate (soot removal) was reduced even more, and the net effect was increased soot emissions. EGR resulted in an accumulation of polycyclic aromatic hydrocarbons (PAHs) during combustion, and led to increased PAH emissions. We show that mass spectral and optical signatures of the in-cylinder soot and associated low volatility organics change dramatically from the soot formation dominated phase to the soot oxidation dominated phase. These signatures include a class of fullerene carbon clusters that we hypothesize represent less graphitized, C5-containing fullerenic (high tortuosity or curved) soot nanostructures arising from decreased combustion temperatures and increased premixing of air and fuel with EGR. Altered soot properties are of key importance when designing emission control strategies such as diesel particulate filters and when introducing novel biofuels.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy