SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Martinsson Lina) ;conttype:(scientificother)"

Sökning: WFRF:(Martinsson Lina) > Övrigt vetenskapligt/konstnärligt

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Herrera-Rivero, Marisol, et al. (författare)
  • Exploring the genetics of lithium response in bipolar disorders.
  • 2023
  • Ingår i: Research square.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N=2,064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II.We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism.Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.
  •  
2.
  • Herrera-Rivero, Marisol, et al. (författare)
  • Immunogenetics of lithium response and psychiatric phenotypes in patients with bipolar disorder.
  • 2023
  • Ingår i: Research square.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The link between bipolar disorder (BP) and immune dysfunction remains controversial. While epidemiological studies have long suggested an association, recent research has found only limited evidence of such a relationship. To clarify this, we investigated the contributions of immune-relevant genetic factors to the response to lithium (Li) treatment and the clinical presentation of BP. First, we assessed the association of a large collection of immune-related genes (4,925) with Li response, defined by the Retrospective Assessment of the Lithium Response Phenotype Scale (Alda scale), and clinical characteristics in patients with BP from the International Consortium on Lithium Genetics (ConLi+Gen, N = 2,374). Second, we calculated here previously published polygenic scores (PGSs) for immune-related traits and evaluated their associations with Li response and clinical features. We found several genes associated with Li response at p < 1×10- 4 values, including HAS3, CNTNAP5 and NFIB. Network and functional enrichment analyses uncovered an overrepresentation of pathways involved in cell adhesion and intercellular communication, which appear to converge on the well-known Li-induced inhibition of GSK-3β. We also found various genes associated with BP's age-at-onset, number of mood episodes, and presence of psychosis, substance abuse and/or suicidal ideation at the exploratory threshold. These included RTN4, XKR4, NRXN1, NRG1/3 and GRK5. Additionally, PGS analyses suggested serum FAS, ECP, TRANCE and cytokine ligands, amongst others, might represent potential circulating biomarkers of Li response and clinical presentation. Taken together, our results support the notion of a relatively weak association between immunity and clinically relevant features of BP at the genetic level.
  •  
3.
  • Hällström, Lina, P.B (författare)
  • Geochemical Characterization of Historical W, Cu and F Skarn Tailings at Yxsjöberg, Sweden : With focus on scheelite weathering and tungsten (W) mobility
  • 2018
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Little attention has been paid to tailings from skarn ore deposits and their environmental impact, even though they can contain elevated content of elements of potential concern. Historical skarn tailings from a former scheelite mine at Yxsjöberg, Sweden, containing e.g. Be, Bi, Cu, F, Sn, S, W, and Zn were geochemically characterized as a first step to evaluate the potential environmental impact and if re-mining of the tailings can be a remediation option. Beryllium, Bi, F, and W are considered as elements of potential concern, and are at the same time listed by the European Commission (2017) as critical raw materials. Scheelite is considered as a relatively stable mineral but most research has been focused on extraction processes. A few laboratory studies have shown weathering of scheelite by artificial groundwater, where the release of WO42-was hypothesized to be due to anion exchange by CO32-. Thus, the release of W from scheelite should be favorable in skarn tailings due to the presence of carbonates.The tailings at Yxsjöberg were deposited between 1897 and 1963 in the Smaltjärnen Repository without dams or a complete cover, and have been in contact with the atmosphere for more than 30 years. Four vertical cores (P2, P4, P5, and P7) throughout the tailings were taken and divided into 134 subsamples, and analyzed for their total chemical composition and paste pH. Selected samples from different depths were mineralogically characterized using optical microscopy, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), Raman vibrational spectroscopy, and X-ray diffraction (XRD). Minerals, hand-picked from drilled rock cores, were analyzed for the element content, and a modified Element to Mineral Conversion (EMC) in combination with a 7-step sequential extraction of the tailings was used to pinpoint the quantitative distribution of elements between the minerals in the tailings. Scheelite weathering and secondary sequestration of W was studied in detail in one representative core. The release of elements to groundwater in the tailings and downstream surface water was measured monthly during 2018 to especially examine the mobility of W.The average concentrations of Be, Bi, Cu, Sn, Zn, W, F and S in the tailings were 280, 490, 950, 560, 300, and 960 ppm, and 1.9 and 1.2 wt.%, respectively. The uppermost tailings have been exposed to the atmosphere for more 30 years, with intensive pyrrhotite oxidation and carbonate dissolution, resulting in low pH (<4) condition, release of elements, and subsequent formations of secondary minerals such as gypsum and hydrous ferric oxides (HFO). Two different deposition periods were identified in one vertical profile. The later period of deposition extended from the ground surface down to 3.5 m, and the older from 3.6 to 6 m. Both periods had unoxidized tailings in the bottom and oxidized sulfides, depletion of calcite and HFO formations upwards.Tungsten was primarily found in scheelite and the abundance was 0.1 wt.% in the tailings at Yxsjöberg. Accumulation peaks of W were found with depth in P2, P4 and P7. In the upper peak of P4, 30% of the total W was associated with secondary HFO. This indicates that weathering of scheelite and secondary capturing of W had occurred in the tailings. At present time, a peak of W in water soluble phases where coinciding with accumulated C in the solid phase at 2.5m depth. Carbonate ions were released when calcite was neutralizing the acid produced in the upper oxidized tailings and the released CO32-was transported downwards to conditions with pH >7. There, it mainly had precipitated as secondary calcite, but small parts are hypothesized to have exchanged WO42-on the surface of scheelite,releasing WO42-to the pore water. In the oxidized tailings of the older and deeper tailing,goethite was found as rims around scheelite grains. This is probably due to Fe ions attracted to the negative surface of scheelite. This is suggested to decrease further weathering of scheelite, and also to some extent decrease the release of WO42-to the groundwater from above lying layers through adsorption.The changes in geochemical conditions in the tailings have decreased the water quality in receiving waters of Smaltjärnens Repository with increased concentrations of Ca, F, Fe,Mn, and SO42-. pH was on average 6.3 in the groundwater in the tailings and 5.7 in the surface water 300 m downstream. EC was on average 2.6 mS/cm in the groundwater and 131 μS/cm in the surface water. Low concentrations of dissolved W was found in the groundwater (max: 20 μg/l) in the tailings and in the downstream surface water the W concentration (max: 0.2 μg/l) was 20 times larger than the reference sample. These results show that scheelite is releasing W to a limited degree to downstream waters and are therefore a potential resource to re-mine to support the supply of critical raw materials in the EU.Beryllium, F, and Zn were released to the downstream surface water from the Smaltjärnen Repository, and to a higher degree than W. The rare and easily-weathered mineral danalite (Fe4Be3(SiO4)3S) contained approximately 40% of the total Be and Zn concentrations in the tailings and is suggested to be the major source to the release of Be and Zn. Fluorine was mainly found in fluorite which showed signs of weathering in the acidic condition in the uppermost oxidized tailings, subsequent with decreased content in the tailings. The mobility of these elements will be further studied.
  •  
4.
  • Hällström, Lina (författare)
  • Source, mobility and fate of critical Be, Bi, F and W from historical sulfidic-oxidic skarn tailings : Re-mining as remediation method?
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • There is a potential risk that geochemical cycles of several critical metals will be affected in the pristine environment, when mining of these metals increases to meet the demand in green technology. The identification of critical metals is based on the economic importance and vulnerability to supply restrictions. In the past, naturally low concentrations in the environment, and instrumental analysis with higher detection limits, has limited research regarding several of these critical metals. However, to understand their geochemical behavior and potential environmental impact are of high importance to ensure a responsible development of mine waste- and water management.       Skarn ores can contain high amounts of Fe-sulfides, carbonates and fluorite, together with enriched concentrations of critical metals such as Be, Bi and W. Nevertheless, little attention has been paid to mine drainage from skarn tailings and their environmental impact, compared to tailings from sulfidic deposits. At Yxsjö mine site, Sweden, skarn tailings enriched in the major elements C, F, S (1.0, 1.9 and 1.2 wt.%.) and Be, Bi, and W (average 280, 500 and 960 ppm, respectively) were deposited in Smaltjärnen repository (1918-1963). The tailings were stored in ambient conditions until 1993 when the tailings were covered by sewage sludge. In-between 1969-1989, tailings were discharged into Morkulltjärnen repository, which was covered with sewage sludge and partly water saturated directly after closure. This thesis focuses on the Smaltjärnen tailings. The element distribution  in the tailings were identified by combining 1) total concentrations of nine targeted minerals from rock drilled cores, 2) total concentrations of 99 samples from four intact tailings cores, and 3) environmental mineralogy (EM) conducted on one of the cores. The environmental mineralogy included paste-pH, sequential extractions, optical microscopy, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), Raman vibrational spectroscopy and X-ray diffraction (XRD). Environmental mineralogy was also used to reveal geochemical processes affecting the mobility of elements in the tailings. Monthly water samples (May-October, 2018) were taken in three groundwater wells in the tailings, and at five surface water locations downstream the tailings. At three surface water locations, the diatom taxonomy response to the water quality was used to evaluate the impact on ecosystems. The quality of the mine drainage was compared to surface water downstream Morkulltjärnens repository and to a reference point. The overall results were used to evaluate the need for remediation, and particularly, the possibility to use re-mining as remediation method.        The Smaltjärnen tailings contained 88 wt.%. of Ca-rich silicates accompanied by minerals such as calcite [CaCO3], fluorite [CaF2], monoclinic and hexagonal pyrrhotite [Fe1-xS)], danalite [Be3(Fe4.4Mn0.95Zn0.4)(SiO4)3.2S1.4], scheelite [CaWO4] and bismuthinite [Bi3S2] (average 5.7, 3.6, 2.4, 0.3, 0.1 wt.%. and 0.1 wt.%., respectively). Both pyrrhotite and danalite had oxidized in the upper parts of the tailings down to 2.5m depth, and calcite had partly neutralized the acid produced resulting in a pH decrease from 8 to 4 in the upper parts of the tailings. Weathering of danalite was intensified by the more acidic conditions (pH<6), in which Be hydrolyzes. The lowered pH enabled dissolution of fluorite, resulting in severely high concentrations of F in the groundwater (average 73 mg/L) and surface water (average 1.6 mg/L). In the uppermost tailings, secondary gypsum [CaSO4], Al-complexes and hydrous ferric oxides (HFO) had formed.       The geochemical behavior of Be was complex in the tailings and in surface water downstream the tailings. According to the sequential extraction, Be released from danalite in the upper most tailings were present in water soluble phases, as exchangeable phases and had co-precipitated with Al- and Fe-oxyhydroxides. A strong correlation between Be, Ca and S in water soluble phases and in the surface water downstream the tailings indicated that Be partly substituted for Ca in secondary gypsum. In two groundwater wells, secondary precipitates of a white sludge containing Be, Al, F and Zn were found, indicating that Be was partly removed from the groundwater by Al-complexes. In the third groundwater well, the globally highest dissolved concentrations of Be were measured (average 4.5 mg/L), and in the surface water the concentrations (average 41 µg/L) were well above thresholds values for aquatic organisms (1 µg/L). In these pH-conditions (average 5.7-6.5) and oxygenated waters, Be is expected to precipitate as Be(OH)2 if complexing ligands are absent. A strong correlation between dissolved Be and F was found in the surface water, indicating that Be-fluorocomplexes had formed.       Bismuth and W have previously been considered as relatively immobile elements. However, the results showed that both Bi and W had partly been mobilized from their primary minerals (bismuthinite and scheelite) in the tailings. Weathered bismuthinite and scheelite grains with rims of goethite and water soluble phases of Bi and W were found in the deeper tailings with pH>7. The release of WO42- was hypothetically attributed to anion exchange with CO32- on surfaces of scheelite. Because, at the same depth where W was mobilized, solid C was accumulated and secondary orthogonal calcite was frequently detected with Raman spectroscopy. Bismuth was scavenged in the tailings by exchangeable phases and co-precipitation with HFO in the upper-most tailings. In the groundwater, Bi was just above the detection limit in all groundwater wells, while W was found in elevated concentrations. In the surface water, Bi and W were transported in the particulate phase together with Fe, and settled in the sediments a few 100 meters from the tailings outlet.       Surface water downstream Morkulltjärnen had a near-neutral pH (average 6.6) and of all elements analyzed, only dissolved W (average 1.1 µg/L) were high compared to threshold values (0.8 µg/L) and the reference sample. Dissolved Be, Ca, F and S from Smaltjärnen, and dissolved W from Morkulltjärnen were found in elevated concentrations more than 2 km from the mine site. Along this distance, metal tolerant diatom species (Achnanthidium minutissimum group II and Brachysira neoexilis, respectively) were dominant (>50%), indicating a negative impact on ecosystems. The mine drainage from Smaltjärnen had a larger negative impact on the diatom taxonomy with higher abundance of metal tolerant species, lower richness and evenness, more than 1% of deformed valves and the taxonomy was affected by the lower pH, compared to diatoms downstream Morkulltjärnen repository.       In conclusion, pyrrhotite oxidation was the direct or indirect cause of Be, Bi, F and W mobilization in the Smaltjärnen tailings, resulting in low quality mine drainage. The oxidation rate decrease with time, but weathering of the Smaltjärnen tailings is expected to be ongoing for hundreds of years since only a small part had weathered during the 50-100 years of storage. The low water quality and negative impact on diatoms, stress the need for remediation. Low concentrations of Be, Bi, Ca, F, Fe and S, accompanied by a near-neutral pH (average pH 6.6) downstream Morkulltjärnen, suggested that cover and water saturation could inhibit sulfide and danalite oxidation, and indirectly prevent fluorite weathering. However, high concentrations of dissolved W downstream Morkulltjärnen displayed that cover and water saturation can increase the mobility of W in the Smaltjärnen tailings, which needs to be taken into consideration. This thesis shows the importance of understanding the complex mineral and element matrix in skarn tailings before choosing remediation technique. Re-mining could be a beneficial remediation method since most W were found in intact scheelite grains. However, more research regarding the mineral processing and metallurgy is needed to ensure a sustainable extraction technique that separates sulfides, carbonates, danalite and fluorite, and deposits them in a proper way.
  •  
5.
  • Kelsoe, John, et al. (författare)
  • Lithium Response in Bipolar Disorder is Associated with Focal Adhesion and PI3K-Akt Networks: A Multi-omics Replication Study.
  • 2023
  • Ingår i: Research square.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2,039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.
  •  
6.
  • Martinsson, Lina (författare)
  • Biology of lithium response in bipolar disorder : genetic mechanisms and telomeres
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Bipolar disorder is a common, chronic and severe mental illness, causing suffering and large costs. Lithium treatment is the golden standard and works in 2/3 of patients, of which 50% are called lithium responders. There is strong evidence that both bipolar disorder and the degree of lithium response are highly heritable, although many mechanisms are unknown. Short telomere length has been found in both somatic and psychiatric disorders, but little is known about telomeres in bipolar disorder and nothing about telomeres and lithium treatment. A few studies limited in size have reported an increased risk of kidney cancer in lithium-treated patients. These findings have led to warnings and changes in policies for lithium treatment, although clinicians and researchers have disputed it. There is thus a clinical need for large-scale studies and reliable evaluations of the cancer incidence in lithium-treated bipolar patients. Aims: The overall aim of this thesis is to increase the knowledge of the genetic mechanisms in bipolar disorder and in lithium response. Specifically, it aims to find genetic associations to lithium response and to investigate how telomere length is related to bipolar disorder and lithium treatment. Additionally, it explores the overall and site-specific cancer incidence in bipolar disorder and lithium treatment. Methods: Study I is a GWAS of lithium response. Study II is a retrospective study of telomere length in lithium-treated bipolar patients. Study III is an association study of a genetic variant in the hTERT gene (previously associated with short telomeres) and depression, and a retrospective cohort study of telomere length in depression. Study IV is a longitudinal study of telomere length in lithium-treated bipolar patients. Study V is a register study of overall and specific cancer incidence in lithium-treated bipolar patients compared to the general population. Results: I) A single locus with four linked common gene variants on chromosome 21 coding for long, non-coding RNAs, which might be important for brain gene regulation, was associated with lithium response. II) Leukocyte telomeres were 35% longer in bipolar patients compared to healthy controls and correlated positively with length of lithium treatment in patients who had had lithium for more than 2.5 years. Lithium responders had 10% longer telomeres than non-responders. Short telomeres were associated with a larger number of depressive episodes. III) A genetic variant in the hTERT gene was associated with the number of depressions in bipolar type 1 patients responding to lithium and with unipolar depression. Telomere length was shorter in depressed patients without previous childhood trauma. IV) The total reduction of leukocyte telomere length between tests was, for bipolar patients, an average of 2.1% per year versus 3.7% per year in healthy controls. Age at baseline had a positive effect while total time on lithium between tests had a negative effect on the leukocyte telomere length reduction independent of other confounders. In bipolar patients there was no association between the total number of leukocytes or leukocyte subtypes and leukocyte telomere length at follow-up. V) There was no increase in the overall or site-specific cancer incidence in lithium-treated patients in the age span of 50-84 years (N=2 393) compared to the general population (N=2 593 011). Conclusions: Association of lithium response to a genomic region containing long, noncoding RNA with potential importance for gene regulation in the brain adds a new piece of knowledge to the heritability of lithium response in bipolar disorder. Results must be replicated and translated into a biological context. The new finding of a decelerating effect of lithium treatment on telomere shortening suggests that lithium might have operative effects on telomere biology, which also has potential importance for lithium response and should be investigated further. An important clinical implication of the lack of difference in cancer incidence between lithium-treated bipolar patients and the general population is that recently added warnings for renal cancer in patients with long-term lithium treatment is unnecessary and ought to be omitted from the current policies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
annan publikation (3)
doktorsavhandling (2)
licentiatavhandling (1)
Typ av innehåll
Författare/redaktör
Landén, Mikael, 1966 (3)
Alda, Martin (3)
Vieta, Eduard (3)
Lavebratt, Catharina (3)
Amare, Azmeraw T. (3)
Monteleone, Palmiero (3)
visa fler...
Schalling, Martin (3)
Schubert, Klaus Oliv ... (3)
Papiol, Sergi (3)
Heilbronner, Urs (3)
Degenhardt, Franzisk ... (3)
Hou, Liping (3)
Shekhtman, Tatyana (3)
Adli, Mazda (3)
Akula, Nirmala (3)
Akiyama, Kazufumi (3)
Ardau, Raffaella (3)
Arias, Bárbara (3)
Aubry, Jean-Michel (3)
Backlund, Lena (3)
Bellivier, Frank (3)
Bengesser, Susanne (3)
Marie-Claire, Cynthi ... (3)
Cervantes, Pablo (3)
Chen, Hsi-Chung (3)
Chillotti, Caterina (3)
Cichon, Sven (3)
Cruceanu, Cristiana (3)
Dalkner, Nina (3)
DePaulo, J Raymond (3)
Etain, Bruno (3)
Jamain, Stéphane (3)
Falkai, Peter (3)
Forstner, Andreas J (3)
Frisén, Louise (3)
Gard, Sébastien (3)
Grigoroiu-Serbanescu ... (3)
Grof, Paul (3)
Hashimoto, Ryota (3)
Hauser, Joanna (3)
Herms, Stefan (3)
Hoffmann, Per (3)
Jiménez, Esther (3)
Kahn, Jean-Pierre (3)
Kassem, Layla (3)
Kuo, Po-Hsiu (3)
Kato, Tadafumi (3)
Kelsoe, John (3)
Kittel-Schneider, Sa ... (3)
Ferensztajn-Rochowia ... (3)
visa färre...
Lärosäte
Karolinska Institutet (4)
Göteborgs universitet (3)
Luleå tekniska universitet (2)
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (3)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy