SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marzari F.) ;pers:(Pajola M.)"

Sökning: WFRF:(Marzari F.) > Pajola M.

  • Resultat 1-10 av 62
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barucci, M. A., et al. (författare)
  • Detection of exposed H2O ice on the nucleus of comet 67P/Churyumov-Gerasimenko as observed by Rosetta OSIRIS and VIRTIS instruments
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 595
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Since the orbital insertion of the Rosetta spacecraft, comet 67P/Churyumov-Gerasimenko (67P) has been mapped by OSIRIS camera and VIRTIS spectro-imager, producing a huge quantity of images and spectra of the comet's nucleus. Aims. The aim of this work is to search for the presence of H2O on the nucleus which, in general, appears very dark and rich in dehydrated organic material. After selecting images of the bright spots which could be good candidates to search for H2O ice, taken at high resolution by OSIRIS, we check for spectral cubes of the selected coordinates to identify these spots observed by VIRTIS. Methods. The selected OSIRIS images were processed with the OSIRIS standard pipeline and corrected for the illumination conditions for each pixel using the Lommel-Seeliger disk law. The spots with higher I/F were selected and then analysed spectrophotometrically and compared with the surrounding area. We selected 13 spots as good targets to be analysed by VIRTIS to search for the 2 mu m absorption band of water ice in the VIRTIS spectral cubes. Results. Out of the 13 selected bright spots, eight of them present positive H2O ice detection on the VIRTIS data. A spectral analysis was performed and the approximate temperature of each spot was computed. The H2O ice content was confirmed by modeling the spectra with mixing (areal and intimate) of H2O ice and dark terrain, using Hapke's radiative transfer modeling. We also present a detailed analysis of the detected spots.
  •  
2.
  • Fornasier, S., et al. (författare)
  • Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Rosetta mission of the European Space Agency has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014 and is now in its escort phase. A large complement of scientific experiments designed to complete the most detailed study of a comet ever attempted are onboard Rosetta. Aims. We present results for the photometric and spectrophotometric properties of the nucleus of 67P derived from the OSIRIS imaging system, which consists of a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). The observations presented here were performed during July and the beginning of August 2014, during the approach phase, when OSIRIS was mapping the surface of the comet with several filters at different phase angles (1.3 degrees-54 degrees). The resolution reached up to 2.1 m/px. Methods. The OSIRIS images were processed with the OSIRIS standard pipeline, then converted into I/F. radiance factors and corrected for the illumination conditions at each pixel using the Lommel-Seeliger disk law. Color cubes of the surface were produced by stacking registered and illumination-corrected images. Furthermore, photometric analysis was performed both on disk-averaged photometry in several filters and on disk-resolved images acquired with the NAC orange filter, centered at 649 ran, using Hapke modeling. Results. The disk-averaged phase function of the nucleus of 67P shows a strong opposition surge with a G parameter value of -0.13 +/- 0.01 in the HG system formalism and an absolute magnitude H-v(1, 1, 0) = 15.74 +/- 0.02 mag. The integrated spectrophotometry in 20 filters covering the 250-1000 nm wavelength range shows a red spectral behavior, without clear absorption bands except for a potential absorption centered at similar to 290 rim that is possibly due to SO2 ice. The nucleus shows strong phase reddening, with disk-averaged spectral slopes increasing from 11%/( 100 nm) to 16%/(100 nm) in the 1.3 degrees-54 degrees phase angle range. The geometric albedo of the comet is 6.5 +/- 0.2% at 649 nm, with local variations of up to similar to 16% in the Hapi region. From the disk-resolved images we computed the spectral slope together with local spectrophotometry and identified three distinct groups of regions (blue, moderately red, and red). The Hapi region is the brightest, the bluest in term of spectral slope, and the most active surface on the comet. Local spectrophotometry shows an enhancement of the flux in the 700-750 nm that is associated with coma emissions.
  •  
3.
  • Giacomini, L., et al. (författare)
  • Geologic mapping of the Comet 67P/Churyumov-Gerasimenko's Northern hemisphere
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S352-S369
  • Tidskriftsartikel (refereegranskat)abstract
    • The Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS), the scientific imaging system onboard the Rosetta mission, has been acquiring images of the nucleus of the comet 67P/Churyumov-Gerasimenko since 2014 August with a resolution which allows a detailed analysis of its surface. Indeed, data reveal a complex surface morphology which is likely the expression of different processes which occurred at different times on the cometary nucleus. In order to characterize these different morphologies and better understand their distribution, we performed a geologic mapping of comet's 67P Northern hemisphere in which features have been distinguished based on their morphological, textural and stratigraphic characteristics. For this purpose, we used narrow-angle camera images acquired in 2014 August and September with a spatial scale ranging from 1.2 to 2.4 m pixel(-1). Several different geologic units have been identified on the basis of their different surface textures, granulometry and morphology. Some of these units are distinctive and localized, whereas others are more common and distributed all over the Northern hemisphere. Moreover, different types of linear features have been distinguished on the basis of their morphology. Some of these lineaments have never been observed before on a comet and can offer important clues on the internal structures of the nucleus itself. The geologic mapping results presented here will allow us to better understand the processes which affected the nucleus' surface and thus the origin and evolutionary history of comet 67P/Churyumov-Gerasimenko.
  •  
4.
  • Gutierrez, P. J., et al. (författare)
  • Possible interpretation of the precession of comet 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Data derived from the reconstruction of the nucleus shape of comet 67P/Churyumov-Gerasimenko (67P) from images of the OSIRIS camera onboard ROSETTA show evidence that the nucleus rotates in complex mode. First, the orientation of the spin axis is not fixed in an inertial reference frame, which suggests a precessing motion around the angular momentum vector with a periodicity of approximately 257 h +/- 12 h. Second, periodograms of the right ascension and declination (RA/Dec) coordinates of the body-frame Z axis show a very significant (higher than 99.99%) periodicity at 276 h +/- 12 h, different from the rotational period of 12.40 h as previously determined from light-curve analysis. Aims. The main goal is to interpret the data and associated periodicities of the spin axis orientation in space. Methods. We analyzed the spin axis orientation in space and associated periodicities and compared them with solutions of Euler equations under the assumption that the body rotates in torque-free conditions. Statistical tests comparing the observationally derived spin axis orientation with the outcome from simulations were applied to determine the most likely inertia moments, excitation level, and periods. Results. Under the assumption that the body is solid-rigid and rotates in torque-free conditions, the most likely interpretation is that 67P is spinning around the principal axis with the highest inertia moment with a period of about 13 h. At the same time, the comet precesses around the angular momentum vector with a period of about 6.35 h. While the rotating period of such a body would be about 12.4 h, RA/Dec coordinates of the spin axis would have a periodicity of about 270 h as a result of the combination of the two aforementioned motions. Conclusions. The most direct and simple interpretation of the complex rotation of 67P requires a ratio of inertia moments significantly higher than that of a homogeneous body.
  •  
5.
  • Höfner, S., et al. (författare)
  • Thermophysics of fractures on comet 67P/Churyumov-Gerasimenko
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 608
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The camera OSIRIS on board Rosetta obtained high-resolution images of the nucleus of comet 67P/Churyumov-Gerasimenko (67P). Great parts of the nucleus surface are composed of fractured terrain.Aims. Fracture formation, evolution, and their potential relationship to physical processes that drive activity are not yet fully understood. Observed temperatures and gas production rates can be explained or interpreted with the presence of fractures by applying appropriate modelling methods.Methods. We followed a transient thermophysical model approach that includes radiative, conductive, and water-ice sublimation fluxes by considering a variety of heliocentric distances, illumination conditions, and thermophysical properties for a set of characteristic fracture geometries on the nucleus of 67P. We computed diurnal temperatures, heat fluxes, and outgassing behaviour in order to derive and distinguish the influence of the mentioned parameters on fractured terrain.Results. Our analysis confirms that fractures, as already indicated by former studies about concavities, deviate from flat-terrain topographies with equivalent properties, mostly through the effect of self-heating. Compared to flat terrain, illuminated cometary fractures are generally warmer, with smaller diurnal temperature fluctuations. Maximum sublimation rates reach higher peaks, and dust mantle quenching effects on sublimation rates are weaker. Consequently, the rough structure of the fractured terrain leads to significantly higher inferred surface thermal inertia values than for flat areas with identical physical properties, which might explain the range of measured thermal inertia on 67P.Conclusions. At 3.5 AU heliocentric distance, sublimation heat sinks in fractures converge to maximum values >50 W / m2 and trigger dust activity that can be related mainly to H2O. Fractures are likely to grow through the erosive interplay of alternating sublimation and thermal fatigue.
  •  
6.
  • La Forgia, F., et al. (författare)
  • Geomorphology and spectrophotometry of Philae's landing site on comet 67P/Churyumov-Gerasimenko
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On 12 November 2014 the European mission Rosetta succeeded in delivering a lander, named Philae, on the surface of one of the smallest, low-gravity and most primitive bodies of the solar system, the comet 67P/Churyumov-Gerasimenko (67P). Aims. The aim of this paper is to provide a comprehensive geomorphological and spectrophotometric analysis of Philae's landing site (Agilkia) to give an essential framework for the interpretation of its in situ measurements. Methods. OSIRIS images, coupled with gravitational slopes derived from the 3D shape model based on stereo-photogrammetry were used to interpret the geomorphology of the site. We adopted the Hapke model, using previously derived parameters, to photometrically correct the images in orange filter (649.2 nm). The best approximation to the Hapke model, given by the Akimov parameter-less function, was used to correct the reflectance for the effects of viewing and illumination conditions in the other filters. Spectral analyses on coregistered color cubes were used to retrieve spectrophotometric properties. Results. The landing site shows an average normal albedo of 6.7% in the orange filter with variations of similar to 15% and a global featureless spectrum with an average red spectral slope of 15.2%/100 nm between 480.7 nm (blue filter) and 882.1 nm (near-IR filter). The spatial analysis shows a well-established correlation between the geomorphological units and the photometric characteristics of the surface. In particular, smooth deposits have the highest reflectance a bluer spectrum than the outcropping material across the area. Conclusions. The featureless spectrum and the redness of the material are compatible with the results by other instruments that have suggested an organic composition. The observed small spectral variegation could be due to grain size effects. However, the combination of photometric and spectral variegation suggests that a compositional differentiation is more likely. This might be tentatively interpreted as the effect of the efficient dust-transport processes acting on 67P. High-activity regions might be the original sources for smooth fine-grained materials that then covered Agilkia as a consequence of airfall of residual material. More observations performed by OSIRIS as the comet approaches the Sun would help interpreting the processes that work at shaping the landing site and the overall nucleus.
  •  
7.
  • Lucchetti, A., et al. (författare)
  • Characterization of the Abydos region through OSIRIS high-resolution images in support of CIVA measurements
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 585
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On 12 November 2014, the European mission Rosetta delivered the Philae lander on the nucleus of comet 67P /Churyumov-Gerasimenko (67P). After the first touchdown, the lander bounced three times before finally landing at a site named Abydos. Aims. We provide a morphologically detailed analysis of the Abydos landing site to support Philae's measurements and to give context for the interpretation of the images coming from the Comet Infrared and Visible Analyser (CIVA) camera system onboard the lander. Methods. We used images acquired by the OSIRIS Narrow Angle Camera (NAC) on 6 December 2014 to perform the analysis of the Abydos landing site, which provided the geomorphological map, the gravitational slope map, the size-frequency distribution of the boulders. We also computed the albedo and spectral reddening maps. Results. The morphological analysis of the region could suggest that Philae is located on a primordial terrain. The Abydos site is surrounded by two layered and fractured outcrops and presents a 0.02 km(2) talus deposit rich in boulders. The boulder size frequency distribution gives a cumulative power-law index of 4.0 + 0.3/0.4, which is correlated with gravitational events triggered by sublimation and /or thermal fracturing causing regressive erosion. The average value of the albedo is 5.8% at lambda(1) = 480.7 nm and 7.4% at lambda(2) = 649.2 nm, which is similar to the global albedos derived by OSIRIS and CIVA, respectively.
  •  
8.
  • Penasa, L., et al. (författare)
  • A three-dimensional modelling of the layered structure of comet 67P/Churyumov-Gerasimenko
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 469, s. S741-S754
  • Tidskriftsartikel (refereegranskat)abstract
    • We provide a three-dimensional model of the inner layered structure of comet 67P based on the hypothesis of an extended layering independently wrapping each lobe. A large set of terrace orientations was collected on the latest shape model and then used as a proxy for the local orientation of the surfaces of discontinuity which defines the layers. We modelled the terraces as a family of concentric ellipsoidal shells with fixed axis ratios, producing a model that is completely defined by just eight free parameters. Each lobe of 67P has been modelled independently, and the two sets of parameters have been estimated by means of non-linear optimization of the measured terrace orientations. The proposed model is able to predict the orientation of terraces, the elongation of cliffs, the linear traces observed in the Wosret and Hathor regions and the peculiar alignment of boulder-like features which has been observed in the Hapi region, which appears to be related to the inner layering of the big lobe. Our analysis allowed us to identify a plane of junction between the two lobes, further confirming the independent nature of the lobes. Our layering models differ from the best-fitting topographic ellipsoids of the surface, demonstrating that the terraces are aligned to an internal structure of discontinuities, which is unevenly exposed on the surface, suggesting a complex history of localized material removal from the nucleus.
  •  
9.
  • Bertini, I., et al. (författare)
  • Search for satellites near comet 67P/Churyumov-Gerasimenko using Rosetta/OSIRIS images
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The European Space Agency Rosetta mission reached and started escorting its main target, the Jupiter-family comet 67P/Churyumov-Gerasimenko, at the beginning of August 2014. Within the context of solar system small bodies, satellite searches from approaching spacecraft were extensively used in the past to study the nature of the visited bodies and their collisional environment. Aims. During the approaching phase to the comet in July 2014, the OSIRIS instrument onboard Rosetta performed a campaign aimed at detecting objects in the vicinity of the comet nucleus and at measuring these objects' possible bound orbits. In addition to the scientific purpose, the search also focused on spacecraft security to avoid hazardous material in the comet's environment. Methods. Images in the red spectral domain were acquired with the OSIRIS Narrow Angle Camera, when the spacecraft was at a distance between 5785 km and 5463 km to the comet, following an observational strategy tailored to maximize the scientific outcome. From the acquired images, sources were extracted and displayed to search for plausible displacements of all sources from image to image. After stars were identified, the remaining sources were thoroughly analyzed. To place constraints on the expected displacements of a potential satellite, we performed Monte Carlo simulations on the apparent motion of potential satellites within the Hill sphere. Results. We found no unambiguous detections of objects larger than similar to 6 m within similar to 20 km and larger than similar to 1 m between similar to 20 km and similar to 110 km from the nucleus, using images with an exposure time of 0.14 s and 1.36 s, respectively. Our conclusions are consistent with independent works on dust grains in the comet coma and on boulders counting on the nucleus surface. Moreover, our analysis shows that the comet outburst detected at the end of April 2014 was not strong enough to eject large objects and to place them into a stable orbit around the nucleus. Our findings underline that it is highly unlikely that large objects survive for a long time around cometary nuclei.
  •  
10.
  • Bertini, I., et al. (författare)
  • The scattering phase function of comet 67P/Churyumov-Gerasimenko coma as seen from the Rosetta/OSIRIS instrument
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S404-S415
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of dust, the most abundant material in cometary nuclei, is pivotal in understanding the original materials forming the Solar system. Measuring the coma phase function provides a tool to investigate the nature of cometary dust. Rosetta/OSIRIS sampled the coma phase function of comet 67P/Churyumov-Gerasimenko, covering a large phase angle range in a small amount of time. Twelve series were acquired in the period from 2015 March to 2016 February for this scientific purpose. These data allowed, after stray light removal, measuring the phase function shape, its reddening, and phase reddening while varying heliocentric and nucleocentric distances. Despite small dissimilarities within different series, we found a constant overall shape. The reflectance has a u-shape with minimum at intermediate phase angles, reaching similar values at the smallest and largest phase angle sampled. The comparison with cometary phase functions in literature indicates OSIRIS curves being consistent with the ones found in many other single comets. The dust has a negligible phase reddening at alpha < 90 degrees, indicating a coma dominated by single scattering. We measured a reddening of [11-14] %/100 nm between 376 and 744 nm. No trend with heliocentric or nucleocentric distance was found, indicating the coma doesn't change its spectrum with time. These results are consistent with single coma grains and close-nucleus coma photometric results. Comparison with nucleus photometry indicates a different backscattering phase function shape and similar reddening values only at alpha < 30 degrees. At larger phase angles, the nucleus becomes significantly redder than the coma.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 62

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy