SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Matic Aleksandar 1968) ;lar1:(uu)"

Sökning: WFRF:(Matic Aleksandar 1968) > Uppsala universitet

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmed, Istaq, 1972, et al. (författare)
  • Synthesis and structural characterization of perovskite type proton conducting BaZr1-xInxO3-delta (0.0 <= x <= 0.75)
  • 2006
  • Ingår i: Solid State Ionics. - : Elsevier BV. - 0167-2738 .- 1872-7689. ; 177:17-18, s. 1395-1403
  • Tidskriftsartikel (refereegranskat)abstract
    • Solid state sintering has been used to prepare the cubic perovskite structured compounds BaZr1-xInxO3-delta (0.0 <= x <= 0.75). Analysis of X-ray powder diffraction (XRPD) data reveals that the unit cell parameter, a, increases linearly with an increased Indium concentration. XRPD data was also used to demonstrate the completion of sample hydration, which was reached when the materials showed a set of single-phase Bragg-peaks. Dynamic thermogravimetric analysis (TGA) data showed that approx. 89% of the total number of available oxygen vacancies can be filled in BaZr1-xInxO3-delta for x=0.50, and that the maximum water uptake occurs below 300 degrees C. Rietveld analysis of the room temperature neutron powder diffraction (NPD) data confirmed the average cubic symmetry (space group Pm-3m), and an expansion of the unit cell parameter after the hydration reaction. The strong O-H stretch band, 2500-3500 cm(-1), in the infrared absorbance spectrum clearly manifests the presence of protons in the hydrated material. Proton conductivity of hydrated BaZr1-xInxO3-delta, x=0.75 was investigated during heating and cooling cycles under dry argon atmosphere. The total conductivity during the heating cycle was nearly two orders of magnitude greater than that of cooling cycle at 300 degrees C, whilst these values were similar at higher temperatures i.e. T > 600 degrees C.
  •  
2.
  • Atkins, Duncan, et al. (författare)
  • Accelerating Battery Characterization Using Neutron and Synchrotron Techniques: Toward a Multi-Modal and Multi-Scale Standardized Experimental Workflow
  • 2022
  • Ingår i: Advanced Energy Materials. - : Wiley. - 1614-6840 .- 1614-6832. ; 12:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Li-ion batteries are the essential energy-storage building blocks of modern society. However, producing ultra-high electrochemical performance in safe and sustainable batteries for example, e-mobility, and portable and stationary applications, demands overcoming major technological challenges. Materials engineering and new chemistries are key aspects to achieving this objective, intimately linked to the use of advanced characterization techniques. In particular, operando investigations are currently attracting enormous interest. Synchrotron- and neutron-based bulk techniques are increasingly employed as they provide unique insights into the chemical, morphological, and structural changes inside electrodes and electrolytes across multiple length scales with high time/spatial resolutions. However, data acquisition, data analysis, and scientific outcomes must be accelerated to increase the overall benefits to the academic and industrial communities, requiring a paradigm shift beyond traditional single-shot, sophisticated experiments. Here a multi-scale and multi-technique integrated workflow is presented to enhance bulk characterization, based on standardized and automated data acquisition and analysis for high-throughput and high-fidelity experiments, the optimization of versatile and tunable cells, as well as multi-modal correlative characterization. Furthermore, new mechanisms, methods and organizations such as artificial intelligence-aided modeling-driven strategies, coordinated beamtime allocations, and community-unified infrastructures are discussed in order to highlight perspectives in battery research at large scale facilities.
  •  
3.
  • Cavallo, Carmen, 1986, et al. (författare)
  • Effect of the Niobium Doping Concentration on the Charge Storage Mechanism of Mesoporous Anatase Beads as an Anode for High-Rate Li-Ion Batteries
  • 2021
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 4:1, s. 215-225
  • Tidskriftsartikel (refereegranskat)abstract
    • A promising strategy to improve the rate performance of Li-ion batteries is to enhance and facilitate the insertion of Li ions into nanostructured oxides like TiO2. In this work, we present a systematic study of pentavalent-doped anatase TiO2 materials for third-generation high-rate Li-ion batteries. Mesoporous niobium-doped anatase beads (Nb-doped TiO2) with different Nb5+ doping (n-type) concentrations (0.1, 1.0, and 10% at.) were synthesized via an improved template approach followed by hydrothermal treatment. The formation of intrinsic n-type defects and oxygen vacancies under RT conditions gives rise to a metallic-type conduction due to a shift of the Fermi energy level. The increase in the metallic character, confirmed by electrochemical impedance spectroscopy, enhances the performance of the anatase bead electrodes in terms of rate capability and provides higher capacities both at low and fast charging rates. The experimental data were supported by density functional theory (DFT) calculations showing how a different n-type doping can be correlated to the same electrochemical effect on the final device. The Nb-doped TiO2 electrode materials exhibit an improved cycling stability at all the doping concentrations by overcoming the capacity fade shown in the case of pure TiO2 beads. The 0.1% Nb-doped TiO2-based electrodes exhibit the highest reversible capacities of 180 mAh g-1 at 1C (330 mA g-1) after 500 cycles and 110 mAh g-1 at 10C (3300 mA g-1) after 1000 cycles. Our experimental and computational results highlight the possibility of using n-type doped TiO2 materials as anodes in high-rate Li-ion batteries.
  •  
4.
  • Lindberg, Simon, 1987, et al. (författare)
  • Charge storage mechanism of α-MnO2 in protic and aprotic ionic liquid electrolytes
  • 2020
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753 .- 1873-2755. ; 460
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work we have investigated the charge storage mechanism of MnO2 electrodes in ionic liquid electrolytes. We show that by using an ionic liquid with a cation that has the ability to form hydrogen bonds with the active material (MnO2) on the surface of the electrode, a clear faradaic contribution is obtained. This situation is found for ionic liquids with cations that have a low pKa, i.e. protic ionic liquids. For a protic ionic liquid, the specific capacity at low scan rate rates can be explained by a densely packed layer of cations that are in a standing geometry, with a proton directly interacting through a hydrogen bond with the surface of the active material in the electrode. In contrast, for aprotic ionic liquids there is no interaction and only a double layer contribution to the charge storage is observed. However, by adding an alkali salt to the aprotic ionic liquid, a faradaic contribution is obtained from the insertion of Li+ into the surface of the MnO2 electrode. No effect can be observed when Li+ is added to the protic IL, suggesting that a densely packed cation layer in this case prevent Li-ions from reaching the active material surface.
  •  
5.
  • Xiong, Shizhao, 1985, et al. (författare)
  • Lithium electrodeposition for energy storage: filling the gap between theory and experiment
  • 2022
  • Ingår i: Materials Today Energy. - : Elsevier BV. - 2468-6069. ; 28
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Lithium (Li) metal has been considered a promising anode material for high-energy-density rechargeable batteries, but its utilization is impeded by the nonuniform electrodeposition during the charging process which leads to poor cycling life and safety concerns. Thus, understanding the electrodeposition mechanism of Li-metal anode is of great importance to develop practical engineering strategies for rechargeable Li-metal batteries. The electrodeposition of Li is controlled by both thermodynamic and kinetic factors, such as the solvation free energy of Li-ions, the Li nucleation, the surface diffusion of Li atom, and the strength of the interaction between Li-ion and the electrolyte anion. The scale of the whole process from the Li-ion reduction to the growth of a Li nucleus goes from sub-nanometer up to a few micrometers, which poses an outstanding challenge to both experiments and simulation. In this perspective, we discuss the top-down, the bottom-up, and the middle-way approaches to this challenge and the possible synergies between them.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy