SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Matsuda T.) "

Search: WFRF:(Matsuda T.)

  • Result 1-10 of 127
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2017
  • swepub:Mat__t
  •  
2.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
4.
  • Namkoong, H, et al. (author)
  • DOCK2 is involved in the host genetics and biology of severe COVID-19
  • 2022
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 609:7928, s. 754-
  • Journal article (peer-reviewed)abstract
    • Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1–5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.
  •  
5.
  •  
6.
  •  
7.
  • Mishra, A., et al. (author)
  • Stroke genetics informs drug discovery and risk prediction across ancestries
  • 2022
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 611
  • Journal article (peer-reviewed)abstract
    • Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.
  •  
8.
  • Ramdas, S., et al. (author)
  • A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids
  • 2022
  • In: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 109:8, s. 1366-1387
  • Journal article (peer-reviewed)abstract
    • A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.
  •  
9.
  • Imanishi, T., et al. (author)
  • Integrative annotation of 21,037 human genes validated by full-length cDNA clones
  • 2004
  • In: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 2:6, s. 856-875
  • Journal article (peer-reviewed)abstract
    • The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 127
Type of publication
journal article (112)
conference paper (12)
Type of content
peer-reviewed (113)
other academic/artistic (11)
Author/Editor
Suzuki, H. (23)
Beck, R. (23)
Ivanov, A. (19)
Kondo, K. (19)
Orlov, I. (18)
Alexeev, G. D. (18)
show more...
Martin, A. (18)
Huber, S. (18)
Tosello, F. (18)
Chung, S. U. (18)
Efremov, A. (18)
Sarkar, S. (18)
Anosov, V. (18)
Ketzer, B. (18)
Dziewiecki, M. (18)
Rychter, A. (18)
Zaremba, K. (18)
Ziembicki, M. (18)
Amoroso, A. (18)
Nerling, F. (18)
Guskov, A. (18)
Zavertyaev, M (18)
Badelek, B (18)
Birsa, R (18)
Bradamante, F (18)
Bressan, A (18)
Andrieux, V. (18)
Peng, J-C (18)
Slunečka, M (18)
Virius, M (18)
Miyachi, Y. (18)
Austregesilo, A. (18)
Balestra, F. (18)
Barth, J. (18)
Bedfer, Y. (18)
Bernhard, J. (18)
Bicker, K. (18)
Bielert, E. R. (18)
Bodlak, M. (18)
Chiosso, M. (18)
Cicuttin, A. (18)
Crespo, M. L. (18)
Dasgupta, S. S. (18)
Dasgupta, S. (18)
Denisov, O. Yu. (18)
Dhara, L. (18)
Donskov, S. V. (18)
Doshita, N. (18)
Franco, C. (18)
Friedrich, J. M. (18)
show less...
University
Karolinska Institutet (68)
Uppsala University (43)
Lund University (19)
Chalmers University of Technology (12)
University of Gothenburg (10)
Umeå University (9)
show more...
Stockholm University (6)
Högskolan Dalarna (3)
Linköping University (2)
Stockholm School of Economics (2)
Royal Institute of Technology (1)
Örebro University (1)
Swedish Museum of Natural History (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (127)
Research subject (UKÄ/SCB)
Natural sciences (50)
Medical and Health Sciences (25)
Engineering and Technology (4)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view