SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mattisson Jonas) ;lar1:(uu)"

Sökning: WFRF:(Mattisson Jonas) > Uppsala universitet

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Danielsson, Marcus, et al. (författare)
  • Longitudinal changes in the frequency of mosaic chromosome Y loss in peripheral blood cells of aging men varies profoundly between individuals
  • 2020
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 28:3, s. 349-357
  • Tidskriftsartikel (refereegranskat)abstract
    • Mosaic loss of chromosome Y (LOY) is the most common somatic genetic aberration and is associated with increased risk for all-cause mortality, various forms of cancer and Alzheimer's disease, as well as other common human diseases. By tracking LOY frequencies in subjects from which blood samples have been serially collected up to five times during up to 22 years, we observed a pronounced intra-individual variation of changes in the frequency of LOY within individual men over time. We observed that in some individuals the frequency of LOY in blood clearly progressed over time and that in other men, the frequency was constant or showed other types of longitudinal development. The predominant method used for estimating LOY is calculation of the median Log R Ratio of probes located in the male specific part of chromosome Y (mLRRY) from intensity data generated by SNP-arrays, which is difficult to interpret due to its logarithmic and inversed scale. We present here a formula to transform mLRRY-values to percentage of LOY that is a more comprehensible unit. The formula was derived using measurements of LOY from matched samples analysed using SNP-array, whole genome sequencing and a new AMELX/AMELY-based assay for droplet digital PCR. The methods described could be applied for analyses of the vast amount of SNP-array data already generated in the scientific community, allowing further discoveries of LOY associated diseases and outcomes.
  •  
2.
  • Danielsson, Marcus, et al. (författare)
  • Reply to Veitia
  • 2021
  • Ingår i: European Journal of Human Genetics. - : Springer Nature. - 1018-4813 .- 1476-5438. ; 29:9, s. 1323-1324
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
3.
  • Dumanski, Jan P., et al. (författare)
  • Immune cells lacking Y chromosome show dysregulation of autosomal gene expression
  • 2021
  • Ingår i: Cellular and Molecular Life Sciences (CMLS). - : Springer. - 1420-682X .- 1420-9071. ; 78:8, s. 4019-4033
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemiological investigations show that mosaic loss of chromosome Y (LOY) in leukocytes is associated with earlier mortality and morbidity from many diseases in men. LOY is the most common acquired mutation and is associated with aberrant clonal expansion of cells, yet it remains unclear whether this mosaicism exerts a direct physiological effect. We studied DNA and RNA from leukocytes in sorted- and single-cells in vivo and in vitro. DNA analyses of sorted cells showed that men diagnosed with Alzheimer’s disease was primarily affected with LOY in NK cells whereas prostate cancer patients more frequently displayed LOY in CD4 + T cells and granulocytes. Moreover, bulk and single-cell RNA sequencing in leukocytes allowed scoring of LOY from mRNA data and confirmed considerable variation in the rate of LOY across individuals and cell types. LOY-associated transcriptional effect (LATE) was observed in ~ 500 autosomal genes showing dysregulation in leukocytes with LOY. The fraction of LATE genes within specific cell types was substantially larger than the fraction of LATE genes shared between different subsets of leukocytes, suggesting that LOY might have pleiotropic effects. LATE genes are involved in immune functions but also encode proteins with roles in other diverse biological processes. Our findings highlight a surprisingly broad role for chromosome Y, challenging the view of it as a “genetic wasteland”, and support the hypothesis that altered immune function in leukocytes could be a mechanism linking LOY to increased risk for disease.
  •  
4.
  • Forsberg, Lars A., 1974-, et al. (författare)
  • Mosaic loss of chromosome Y in leukocytes matters
  • 2019
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 51:1, s. 4-7
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
5.
  • Klar, Joakim, PhD, 1974-, et al. (författare)
  • Whole genome sequencing of familial isolated oesophagus atresia uncover shared structural variants
  • 2020
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundOesophageal atresia (OA) is a life-threatening developmental defect characterized by a lost continuity between the upper and lower oesophagus. The most common form is a distal connection between the trachea and the oesophagus, i.e. a tracheoesophageal fistula (TEF). The condition may be part of a syndrome or occurs as an isolated feature. The recurrence risk in affected families is increased compared to the population-based incidence suggesting contributing genetic factors.MethodsTo gain insight into gene variants and genes associated with isolated OA we conducted whole genome sequencing on samples from three families with recurrent cases affected by congenital and isolated TEF.ResultsWe identified a combination of single nucleotide variants (SNVs), splice site variants (SSV) and structural variants (SV) annotated to altogether 100 coding genes in the six affected individuals.ConclusionThis study highlights rare SVs among candidate gene variants in our individuals with OA and provides a gene framework for further investigations of genetic factors behind this malformation.
  •  
6.
  • Lansink, G. M. J., et al. (författare)
  • Potential for increased connectivity between differentiated wolverine populations
  • 2022
  • Ingår i: Biological Conservation. - : Elsevier. - 0006-3207 .- 1873-2917. ; 272
  • Tidskriftsartikel (refereegranskat)abstract
    • Information on genetic population structure provides important knowledge for species conservation. Yet, few studies combine extensive genetic data to evaluate the structure and population dynamics of transboundary populations. Here we used single nucleotide polymorphisms (SNPs), microsatellites and mitochondrial haplotypes to analyze the genetic population structure of wolverines (Gulo gulo) across Fennoscandia using a long-term monitoring dataset of 1708 individuals. Clear population subdivision was detected between the Scandinavian and the eastern Finnish population with a steep cline in the contact zone. While the Scandinavian population showed isolation by distance, large swaths of this population were characterized by high connectivity. Areas with high resistance to gene flow are likely explained by a combination of factors, such as historical isolation and founder effects. From a conservation perspective, promoting gene flow from the population in eastern Finland to the northwest of Scandinavia could augment the less variable Scandinavian population, and increase the demographic resilience of all subpopulations. Overall, the large areas of low resistance to gene flow suggest that transboundary cooperation with aligned actions of harvest and conflict mitigation could improve genetic connectivity across Finland, Sweden, and Norway.
  •  
7.
  •  
8.
  • Mattisson, Jonas, et al. (författare)
  • Leukocytes with chromosome Y loss have reduced abundance of the cell surface immunoprotein CD99
  • 2021
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mosaic loss of chromosome Y (LOY) in immune cells is a male-specific mutation associated with increased risk for morbidity and mortality. The CD99 gene, positioned in the pseudoautosomal regions of chromosomes X and Y, encodes a cell surface protein essential for several key properties of leukocytes and immune system functions. Here we used CITE-seq for simultaneous quantification of CD99 derived mRNA and cell surface CD99 protein abundance in relation to LOY in single cells. The abundance of CD99 molecules was lower on the surfaces of LOY cells compared with cells without this aneuploidy in all six types of leukocytes studied, while the abundance of CD proteins encoded by genes located on autosomal chromosomes were independent from LOY. These results connect LOY in single cells with immune related cellular properties at the protein level, providing mechanistic insight regarding disease vulnerability in men affected with mosaic chromosome Y loss in blood leukocytes.
  •  
9.
  • Mattisson, Jonas, 1994-, et al. (författare)
  • Loss of chromosome Y in regulatory T cells
  • 2024
  • Ingår i: BMC Genomics. - : BioMed Central (BMC). - 1471-2164. ; 25:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundMosaic loss of chromosome Y (LOY) in leukocytes is the most prevalent somatic aneuploidy in aging humans. Men with LOY have increased risks of all-cause mortality and the major causes of death, including many forms of cancer. It has been suggested that the association between LOY and disease risk depends on what type of leukocyte is affected with Y loss, with prostate cancer patients showing higher levels of LOY in CD4 + T lymphocytes. In previous studies, Y loss has however been observed at relatively low levels in this cell type. This motivated us to investigate whether specific subsets of CD4 + T lymphocytes are particularly affected by LOY. Publicly available, T lymphocyte enriched, single-cell RNA sequencing datasets from patients with liver, lung or colorectal cancer were used to study how LOY affects different subtypes of T lymphocyte. To validate the observations from the public data, we also generated a single-cell RNA sequencing dataset comprised of 23 PBMC samples and 32 CD4 + T lymphocytes enriched samples.ResultsRegulatory T cells had significantly more LOY than any other studied T lymphocytes subtype. Furthermore, LOY in regulatory T cells increased the ratio of regulatory T cells compared with other T lymphocyte subtypes, indicating an effect of Y loss on lymphocyte differentiation. This was supported by developmental trajectory analysis of CD4 + T lymphocytes culminating in the regulatory T cells cluster most heavily affected by LOY. Finally, we identify dysregulation of 465 genes in regulatory T cells with Y loss, many involved in the immunosuppressive functions and development of regulatory T cells.ConclusionsHere, we show that regulatory T cells are particularly affected by Y loss, resulting in an increased fraction of regulatory T cells and dysregulated immune functions. Considering that regulatory T cells plays a critical role in the process of immunosuppression; this enrichment for regulatory T cells with LOY might contribute to the increased risk for cancer observed among men with Y loss in leukocytes.
  •  
10.
  • Mattisson, Jonas, 1994- (författare)
  • The role of hematopoietic chromosome Y loss in health and disease
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Mosaic loss of chromosome Y (mLOY) is the most common somatic mutation, and affected men have increased risk for all major causes of death, including cardiovascular diseases and cancer. As a male specific mutation, it helps explain why men live shorter lives than women. However, the causality is debated, and contrasting models have been proposed to explain how Y loss in blood could be linked with disease in other organs. In this thesis, I provide results contributing to this debate.In Paper I, we identify 156 loci associated with genetic susceptibility for mLOY. Enrichment of loci involved in processes such as cell-cycle regulation and cancer susceptibility suggest that mLOY could be viewed as a barometer of genomic instability. In Paper II, we used the mLOY-associated variants identified in Paper I to calculate a PRS for mLOY in an independent cohort. We found that men with high PRS displayed a five-fold increased risk in an age dependent manner.In Paper III, we showed that mLOY and CHIP driving SNVs often co-occur in leukocytes. Considering that they share clinical manifestations, further studies are necessary to elucidate how these mutations contributes to disease risk.  In Paper IV, we studied transcriptional effects of mLOY in leukocytes and identified almost 500 dysregulated autosomal genes, varying between cell types. We also report that mLOY in specific leukocytes might be linked with different types of disease.  In Paper V, regulatory T cells are shown to be affected with Y loss to a greater extent than other CD4+ T lymphocytes. We propose that mLOY might drive T lymphocytes towards the regulatory phenotype, known to exhibit immunosuppressive functions. In Paper VI, we used CITE-seq to show that expression and cell surface abundance of the immunoprotein CD99 is lower in leukocytes with Y loss. This finding provides a possible explanation how mLOY could influence normal immune response, since CD99 is essential is for the mobility and cell-to-cell interactions of leukocytes. In Paper VII, it is shown that hematological mLOY cause disease directly in other organs. Mice with mLOY was shown to have a reduced survival, increased fibrosis and cardiac dysfunction, while men in UK biobank with mLOY in blood was found to die from diseases of the circulatory system in a dose dependent manner. Treatment with TGFβ1-inhibitors could restore cardiac function in mLOY-mice. Together, the presented results show that mLOY both reflect genomic instability overall, while also causing disease directly.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Typ av publikation
tidskriftsartikel (12)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (9)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Forsberg, Lars A., 1 ... (10)
Dumanski, Jan P (7)
Ingelsson, Martin (5)
Ameur, Adam (3)
Lannfelt, Lars (2)
Nordlund, Jessica (2)
visa fler...
Heintz, Julia (1)
Pandzic, Tatjana (1)
Cavelier, Lucia (1)
Lind, Lars (1)
Chanock, Stephen J (1)
Ellegren, Hans (1)
Ljungström, Viktor, ... (1)
Wareham, Nicholas J. (1)
Dennis, Joe (1)
Easton, Douglas F. (1)
Johansson, Åsa (1)
Wang, Ying (1)
Fall, Tove, 1979- (1)
Sundström, Johan, Pr ... (1)
Scott, Robert A (1)
Enroth, Stefan, 1976 ... (1)
Thorsteinsdottir, Un ... (1)
Stefansson, Kari (1)
Klar, Joakim, PhD, 1 ... (1)
Dahl, Niklas (1)
Raine, Amanda (1)
Hammond, Maria, 1984 ... (1)
Gallant, Caroline J. (1)
Engstrand Lilja, Hel ... (1)
Gyllensten, Ulf (1)
Feuk, Lars (1)
Baliakas, Panagiotis ... (1)
Houlston, Richard S. (1)
Sulem, Patrick (1)
Piotrowski, Arkadius ... (1)
Persson, Jens (1)
Spong, Göran (1)
Kleven, O. (1)
Kindberg, Jonas (1)
Li, Rong (1)
Aspi, J (1)
Kojola, I (1)
Imreh, Stefan (1)
Kinnersley, Ben (1)
Maqbool, Khurram (1)
Lindberg, Amanda (1)
McCarroll, Steven A (1)
Murray, Anna (1)
Auton, Adam (1)
visa färre...
Lärosäte
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (12)
Naturvetenskap (2)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy