SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McConnell J. C.) ;pers:(Maselli O. J.)"

Sökning: WFRF:(McConnell J. C.) > Maselli O. J.

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dahl-Jensen, D., et al. (författare)
  • Eemian interglacial reconstructed from a Greenland folded ice core
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 493:7433, s. 489-494
  • Tidskriftsartikel (refereegranskat)abstract
    • Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 +/- 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 +/- 250 metres, reaching surface elevations 122,000 years ago of 130 +/- 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.
  •  
2.
  • Sigl, M., et al. (författare)
  • Timing and climate forcing of volcanic eruptions for the past 2,500 years
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 523:7562, s. 543-549
  • Tidskriftsartikel (refereegranskat)abstract
    • Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing.
  •  
3.
  • Mekhaldi, F., et al. (författare)
  • No Coincident Nitrate Enhancement Events in Polar Ice Cores Following the Largest Known Solar Storms
  • 2017
  • Ingår i: Journal of Geophysical Research: Atmospheres. - 2169-8996. ; 122:21, s. 11-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge on the occurrence rate of extreme solar storms is strongly limited by the relatively recent advent of satellite monitoring of the Sun. To extend our perspective of solar storms prior to the satellite era and because atmospheric ionization induced by solar energetic particles (SEPs) can lead to the production of odd nitrogen, nitrate spikes in ice cores have been tentatively used to document both the occurrence and intensity of past SEP events. However, the reliability of the use of nitrate in ice records as a proxy for SEP events is strongly debated. This is partly due to equivocal detection of nitrate spikes in single ice cores and possible alternative sources, such as biomass burning plumes. Here we present new continuous high-resolution measurements of nitrate and of the biomass burning species ammonium and black carbon, from several Antarctic and Greenland ice cores. We investigate periods covering the two largest known SEP events of 775 and 994 Common Era as well as the Carrington event and the hard SEP event of February 1956. We report no coincident nitrate spikes associated with any of these benchmark events. We also demonstrate the low reproducibility of the nitrate signal in multiple ice cores and confirm the significant relationship between biomass burning plumes and nitrate spikes in individual ice cores. In the light of these new data, there is no line of evidence that supports the hypothesis that ice cores preserve or document detectable amounts of nitrate produced by SEPs, even for the most extreme events known to date.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy