SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McGovern Dermot P. B.) "

Sökning: WFRF:(McGovern Dermot P. B.)

  • Resultat 1-10 av 14
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • McGovern, Dermot P B, et al. (författare)
  • Genome-wide association identifies multiple ulcerative colitis susceptibility loci
  • 2010
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 42:4, s. 332-337
  • Tidskriftsartikel (refereegranskat)abstract
    • Ulcerative colitis is a chronic, relapsing inflammatory condition of the gastrointestinal tract with a complex genetic and environmental etiology. In an effort to identify genetic variation underlying ulcerative colitis risk, we present two distinct genome-wide association studies of ulcerative colitis and their joint analysis with a previously published scan, comprising, in aggregate, 2,693 individuals with ulcerative colitis and 6,791 control subjects. Fifty-nine SNPs from 14 independent loci attained an association significance of P < 10(-5). Seven of these loci exceeded genome-wide significance (P < 5 x 10(-8)). After testing an independent cohort of 2,009 cases of ulcerative colitis and 1,580 controls, we identified 13 loci that were significantly associated with ulcerative colitis (P < 5 x 10(-8)), including the immunoglobulin receptor gene FCGR2A, 5p15, 2p16 and ORMDL3 (orosomucoid1-like 3). We confirmed association with 14 previously identified ulcerative colitis susceptibility loci, and an analysis of acknowledged Crohn's disease loci showed that roughly half of the known Crohn's disease associations are shared with ulcerative colitis. These data implicate approximately 30 loci in ulcerative colitis, thereby providing insight into disease pathogenesis.
  •  
3.
  • Rivas, Manuel A., et al. (författare)
  • A protein-truncating R179X variant in RNF186 confers protection against ulcerative colitis
  • 2016
  • Ingår i: Nature Communications. - London, United Kingdom : Nature Publishing Group. - 2041-1723 .- 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein-truncating variants protective against human disease provide in vivo validation of therapeutic targets. Here we used targeted sequencing to conduct a search for protein-truncating variants conferring protection against inflammatory bowel disease exploiting knowledge of common variants associated with the same disease. Through replication genotyping and imputation we found that a predicted protein-truncating variant (rs36095412, p.R179X, genotyped in 11,148 ulcerative colitis patients and 295,446 controls, MAF=up to 0.78%) in RNF186, a single-exon ring finger E3 ligase with strong colonic expression, protects against ulcerative colitis (overall P=6.89 × 10(-7), odds ratio=0.30). We further demonstrate that the truncated protein exhibits reduced expression and altered subcellular localization, suggesting the protective mechanism may reside in the loss of an interaction or function via mislocalization and/or loss of an essential transmembrane domain.
  •  
4.
  • Rivas, Manuel A., et al. (författare)
  • Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease
  • 2011
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 43:11, s. 1066-U50
  • Tidskriftsartikel (refereegranskat)abstract
    • More than 1,000 susceptibility loci have been identified through genome-wide association studies (GWAS) of common variants; however, the specific genes and full allelic spectrum of causal variants underlying these findings have not yet been defined. Here we used pooled next-generation sequencing to study 56 genes from regions associated with Crohn's disease in 350 cases and 350 controls. Through follow-up genotyping of 70 rare and low-frequency protein-altering variants in nine independent case-control series (16,054 Crohn's disease cases, 12,153 ulcerative colitis cases and 17,575 healthy controls), we identified four additional independent risk factors in NOD2, two additional protective variants in IL23R, a highly significant association with a protective splice variant in CARD9 (P < 1 x 10(-16), odds ratio approximate to 0.29) and additional associations with coding variants in IL18RAP, CUL2, C1orf106, PTPN22 and MUC19. We extend the results of successful GWAS by identifying new, rare and probably functional variants that could aid functional experiments and predictive models.
  •  
5.
  • Cleynen, Isabelle, et al. (författare)
  • Inherited determinants of Crohn's disease and ulcerative colitis phenotypes : a genetic association study
  • 2016
  • Ingår i: The Lancet. - New York, USA : Elsevier. - 0140-6736 .- 1474-547X. ; 387:10014, s. 156-167
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Crohn's disease and ulcerative colitis are the two major forms of inflammatory bowel disease; treatment strategies have historically been determined by this binary categorisation. Genetic studies have identified 163 susceptibility loci for inflammatory bowel disease, mostly shared between Crohn's disease and ulcerative colitis. We undertook the largest genotype association study, to date, in widely used clinical subphenotypes of inflammatory bowel disease with the goal of further understanding the biological relations between diseases.Methods This study included patients from 49 centres in 16 countries in Europe, North America, and Australasia. We applied the Montreal classification system of inflammatory bowel disease subphenotypes to 34,819 patients (19,713 with Crohn's disease, 14,683 with ulcerative colitis) genotyped on the Immunochip array. We tested for genotype-phenotype associations across 156,154 genetic variants. We generated genetic risk scores by combining information from all known inflammatory bowel disease associations to summarise the total load of genetic risk for a particular phenotype. We used these risk scores to test the hypothesis that colonic Crohn's disease, ileal Crohn's disease, and ulcerative colitis are all genetically distinct from each other, and to attempt to identify patients with a mismatch between clinical diagnosis and genetic risk profile.Findings: After quality control, the primary analysis included 29,838 patients (16,902 with Crohn's disease, 12,597 with ulcerative colitis). Three loci (NOD2, MHC, and MST1 3p21) were associated with subphenotypes of inflammatory bowel disease, mainly disease location (essentially fixed over time; median follow-up of 10·5 years). Little or no genetic association with disease behaviour (which changed dramatically over time) remained after conditioning on disease location and age at onset. The genetic risk score representing all known risk alleles for inflammatory bowel disease showed strong association with disease subphenotype (p=1·65 × 10(-78)), even after exclusion of NOD2, MHC, and 3p21 (p=9·23 × 10(-18)). Predictive models based on the genetic risk score strongly distinguished colonic from ileal Crohn's disease. Our genetic risk score could also identify a small number of patients with discrepant genetic risk profiles who were significantly more likely to have a revised diagnosis after follow-up (p=6·8 × 10(-4)).Interpretation: Our data support a continuum of disorders within inflammatory bowel disease, much better explained by three groups (ileal Crohn's disease, colonic Crohn's disease, and ulcerative colitis) than by Crohn's disease and ulcerative colitis as currently defined. Disease location is an intrinsic aspect of a patient's disease, in part genetically determined, and the major driver to changes in disease behaviour over time.Funding: International Inflammatory Bowel Disease Genetics Consortium members funding sources (see Acknowledgments for full list).
  •  
6.
  • Franke, Andre, et al. (författare)
  • Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci
  • 2010
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 42:12, s. 1118-1125
  • Tidskriftsartikel (refereegranskat)abstract
    • We undertook a meta-analysis of six Crohn's disease genome-wide association studies (GWAS) comprising 6,333 affected individuals (cases) and 15,056 controls and followed up the top association signals in 15,694 cases, 14,026 controls and 414 parent-offspring trios. We identified 30 new susceptibility loci meeting genome-wide significance (P < 5 × 10⁻⁸). A series of in silico analyses highlighted particular genes within these loci and, together with manual curation, implicated functionally interesting candidate genes including SMAD3, ERAP2, IL10, IL2RA, TYK2, FUT2, DNMT3A, DENND1B, BACH2 and TAGAP. Combined with previously confirmed loci, these results identify 71 distinct loci with genome-wide significant evidence for association with Crohn's disease.
  •  
7.
  • Goyette, Philippe, et al. (författare)
  • High-density mapping of the MHC identifies a shared role for HLA-DRB1*01 : 03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis
  • 2015
  • Ingår i: Nature Genetics. - New York, USA : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 47:2, s. 172-179
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies of the related chronic inflammatory bowel diseases (IBD) known as Crohn's disease and ulcerative colitis have shown strong evidence of association to the major histocompatibility complex (MHC). This region encodes a large number of immunological candidates, including the antigen-presenting classical human leukocyte antigen (HLA) molecules. Studies in IBD have indicated that multiple independent associations exist at HLA and non-HLA genes, but they have lacked the statistical power to define the architecture of association and causal alleles. To address this, we performed high-density SNP typing of the MHC in >32,000 individuals with IBD, implicating multiple HLA alleles, with a primary role for HLA-DRB1*01:03 in both Crohn's disease and ulcerative colitis. Noteworthy differences were observed between these diseases, including a predominant role for class II HLA variants and heterozygous advantage observed in ulcerative colitis, suggesting an important role of the adaptive immune response in the colonic environment in the pathogenesis of IBD.
  •  
8.
  • Li, Dalin, et al. (författare)
  • A Pleiotropic Missense Variant in SLC39A8 Is Associated With Crohn's Disease and Human Gut Microbiome Composition
  • 2016
  • Ingår i: ; 151:4, s. 724-732
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: Genome-wide association studies have identified 200 inflammatory bowel disease (IBD) loci, but the genetic architecture of Crohn's disease (CD) and ulcerative colitis remain incompletely defined. Here, we aimed to identify novel associations between IBD and functional genetic variants using the Illumina ExomeChip (San Diego, CA).Methods: Genotyping was performed in 10,523 IBD cases and 5726 non-IBD controls. There were 91,713 functional single-nucleotide polymorphism loci in coding regions analyzed. A novel identified association was replicated further in 2 independent cohorts. We further examined the association of the identified single-nucleotide polymorphism with microbiota from 338 mucosal lavage samples in the Mucosal Luminal Interface cohort measured using 16S sequencing.Results: We identified an association between CD and a missense variant encoding alanine or threonine at position 391 in the zinc transporter solute carrier family 39, member 8 protein (SLC39A8 alanine 391 threonine, rs13107325) and replicated the association with CD in 2 replication cohorts (combined meta-analysis P = 5.55 × 10(-13)). This variant has been associated previously with distinct phenotypes including obesity, lipid levels, blood pressure, and schizophrenia. We subsequently determined that the CD risk allele was associated with altered colonic mucosal microbiome composition in both healthy controls (P = .009) and CD cases (P = .0009). Moreover, microbes depleted in healthy carriers strongly overlap with those reduced in CD patients (P = 9.24 × 10(-16)) and overweight individuals (P = 6.73 × 10(-16)).Conclusions: Our results suggest that an SLC39A8-dependent shift in the gut microbiome could explain its pleiotropic effects on multiple complex diseases including CD.
  •  
9.
  • Beaudoin, Melissa, et al. (författare)
  • Deep Resequencing of GWAS Loci Identifies Rare Variants in CARD9, IL23R and RNF186 That Are Associated with Ulcerative Colitis
  • 2013
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 9:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies and follow-up meta-analyses in Crohn's disease (CD) and ulcerative colitis (UC) have recently identified 163 disease-associated loci that meet genome-wide significance for these two inflammatory bowel diseases (IBD). These discoveries have already had a tremendous impact on our understanding of the genetic architecture of these diseases and have directed functional studies that have revealed some of the biological functions that are important to IBD (e.g. autophagy). Nonetheless, these loci can only explain a small proportion of disease variance (similar to 14% in CD and 7.5% in UC), suggesting that not only are additional loci to be found but that the known loci may contain high effect rare risk variants that have gone undetected by GWAS. To test this, we have used a targeted sequencing approach in 200 UC cases and 150 healthy controls (HC), all of French Canadian descent, to study 55 genes in regions associated with UC. We performed follow-up genotyping of 42 rare non-synonymous variants in independent case-control cohorts (totaling 14,435 UC cases and 20,204 HC). Our results confirmed significant association to rare non-synonymous coding variants in both IL23R and CARD9, previously identified from sequencing of CD loci, as well as identified a novel association in RNF186. With the exception of CARD9 (OR = 0.39), the rare non-synonymous variants identified were of moderate effect (OR = 1.49 for RNF186 and OR = 0.79 for IL23R). RNF186 encodes a protein with a RING domain having predicted E3 ubiquitin-protein ligase activity and two transmembrane domains. Importantly, the disease-coding variant is located in the ubiquitin ligase domain. Finally, our results suggest that rare variants in genes identified by genome-wide association in UC are unlikely to contribute significantly to the overall variance for the disease. Rather, these are expected to help focus functional studies of the corresponding disease loci.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
  • [1]2Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy