SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McGuire V) ;mspu:(researchreview)"

Sökning: WFRF:(McGuire V) > Forskningsöversikt

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bigelow, NH, et al. (författare)
  • Climate change and Arctic ecosystems: 1. Vegetation changes north of 55 degrees N between the last glacial maximum, mid-Holocene, and present
  • 2003
  • Ingår i: Journal of Geophysical Research. - 2156-2202. ; 108:D19
  • Forskningsöversikt (refereegranskat)abstract
    • [1] A unified scheme to assign pollen samples to vegetation types was used to reconstruct vegetation patterns north of 55degreesN at the last glacial maximum (LGM) and mid-Holocene (6000 years B. P.). The pollen data set assembled for this purpose represents a comprehensive compilation based on the work of many projects and research groups. Five tundra types (cushion forb tundra, graminoid and forb tundra, prostrate dwarf-shrub tundra, erect dwarf-shrub tundra, and low- and high-shrub tundra) were distinguished and mapped on the basis of modern pollen surface samples. The tundra-forest boundary and the distributions of boreal and temperate forest types today were realistically reconstructed. During the mid-Holocene the tundra-forest boundary was north of its present position in some regions, but the pattern of this shift was strongly asymmetrical around the pole, with the largest northward shift in central Siberia (similar to200 km), little change in Beringia, and a southward shift in Keewatin and Labrador (similar to200 km). Low- and high-shrub tundra extended farther north than today. At the LGM, forests were absent from high latitudes. Graminoid and forb tundra abutted on temperate steppe in northwestern Eurasia while prostrate dwarf-shrub, erect dwarf-shrub, and graminoid and forb tundra formed a mosaic in Beringia. Graminoid and forb tundra is restricted today and does not form a large continuous biome, but the pollen data show that it was far more extensive at the LGM, while low- and high-shrub tundra were greatly reduced, illustrating the potential for climate change to dramatically alter the relative areas occupied by different vegetation types.
  •  
2.
  • Khan, Muhammad Shahzeb, et al. (författare)
  • Leveraging electronic health records to streamline the conduct of cardiovascular clinical trials
  • 2023
  • Ingår i: European Heart Journal. - : Oxford University Press. - 0195-668X .- 1522-9645. ; 44:21, s. 1890-1909
  • Forskningsöversikt (refereegranskat)abstract
    • Conventional randomized controlled trials (RCTs) can be expensive, time intensive, and complex to conduct. Trial recruitment, participation, and data collection can burden participants and research personnel. In the past two decades, there have been rapid technological advances and an exponential growth in digitized healthcare data. Embedding RCTs, including cardiovascular outcome trials, into electronic health record systems or registries may streamline screening, consent, randomization, follow-up visits, and outcome adjudication. Moreover, wearable sensors (i.e. health and fitness trackers) provide an opportunity to collect data on cardiovascular health and risk factors in unprecedented detail and scale, while growing internet connectivity supports the collection of patient-reported outcomes. There is a pressing need to develop robust mechanisms that facilitate data capture from diverse databases and guidance to standardize data definitions. Importantly, the data collection infrastructure should be reusable to support multiple cardiovascular RCTs over time. Systems, processes, and policies will need to have sufficient flexibility to allow interoperability between different sources of data acquisition. Clinical research guidelines, ethics oversight, and regulatory requirements also need to evolve. This review highlights recent progress towards the use of routinely generated data to conduct RCTs and discusses potential solutions for ongoing barriers. There is a particular focus on methods to utilize routinely generated data for trials while complying with regional data protection laws. The discussion is supported with examples of cardiovascular outcome trials that have successfully leveraged the electronic health record, web-enabled devices or administrative databases to conduct randomized trials.
  •  
3.
  • Post, Eric, et al. (författare)
  • Ecological Dynamics Across the Arctic Associated with Recent Climate Change
  • 2009
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 325:5946, s. 1355-1358
  • Forskningsöversikt (refereegranskat)abstract
    • At the close of the Fourth International Polar Year, we take stock of the ecological consequences of recent climate change in the Arctic, focusing on effects at population, community, and ecosystem scales. Despite the buffering effect of landscape heterogeneity, Arctic ecosystems and the trophic relationships that structure them have been severely perturbed. These rapid changes may be a bellwether of changes to come at lower latitudes and have the potential to affect ecosystem services related to natural resources, food production, climate regulation, and cultural integrity. We highlight areas of ecological research that deserve priority as the Arctic continues to warm.
  •  
4.
  • Schuur, E. A. G., et al. (författare)
  • Climate change and the permafrost carbon feedback
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 520:7546, s. 171-179
  • Forskningsöversikt (refereegranskat)abstract
    • Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. Awarming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy