SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McKay J) ;mspu:(researchreview)"

Sökning: WFRF:(McKay J) > Forskningsöversikt

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schael, S, et al. (författare)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Forskningsöversikt (refereegranskat)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
2.
  • Hampton, Stephanie E., et al. (författare)
  • Ecology under lake ice
  • 2017
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 20:1, s. 98-111
  • Forskningsöversikt (refereegranskat)abstract
    • Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experience periods of snow and ice cover. Relatively little is known of winter ecology in these systems, due to a historical research focus on summer ‘growing seasons’. We executed the first global quantitative synthesis on under-ice lake ecology, including 36 abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal differences and connections as well as how seasonal differences vary with geophysical factors. Plankton were more abundant under ice than expected; mean winter values were 43.2% of summer values for chlorophyll a, 15.8% of summer phytoplankton biovolume and 25.3% of summer zooplankton density. Dissolved nitrogen concentrations were typically higher during winter, and these differences were exaggerated in smaller lakes. Lake size also influenced winter-summer patterns for dissolved organic carbon (DOC), with higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation, phytoplankton and zooplankton community composition showed few systematic differences between seasons, although literature suggests that seasonal differences are frequently lake-specific, species-specific, or occur at the level of functional group. Within the subset of lakes that had longer time series, winter influenced the subsequent summer for some nutrient variables and zooplankton biomass.
  •  
3.
  • McKay, Francis, et al. (författare)
  • Artificial intelligence and medical research databases: ethical review by data access committees
  • 2023
  • Ingår i: BMC Medical Ethics. - : BMC. - 1472-6939. ; 24:1
  • Forskningsöversikt (refereegranskat)abstract
    • BackgroundIt has been argued that ethics review committees-e.g., Research Ethics Committees, Institutional Review Boards, etc.- have weaknesses in reviewing big data and artificial intelligence research. For instance, they may, due to the novelty of the area, lack the relevant expertise for judging collective risks and benefits of such research, or they may exempt it from review in instances involving de-identified data.Main bodyFocusing on the example of medical research databases we highlight here ethical issues around de-identified data sharing which motivate the need for review where oversight by ethics committees is weak. Though some argue for ethics committee reform to overcome these weaknesses, it is unclear whether or when that will happen. Hence, we argue that ethical review can be done by data access committees, since they have de facto purview of big data and artificial intelligence projects, relevant technical expertise and governance knowledge, and already take on some functions of ethical review. That said, like ethics committees, they may have functional weaknesses in their review capabilities. To strengthen that function, data access committees must think clearly about the kinds of ethical expertise, both professional and lay, that they draw upon to support their work.ConclusionData access committees can undertake ethical review of medical research databases provided they enhance that review function through professional and lay ethical expertise.
  •  
4.
  • McKay, Francis, et al. (författare)
  • The ethical challenges of artificial intelligence-driven digital pathology
  • 2022
  • Ingår i: The journal of pathology. Clinical research. - : Wiley. - 2056-4538. ; 8:3, s. 209-216
  • Forskningsöversikt (refereegranskat)abstract
    • Digital pathology - the digitalisation of clinical histopathology services through the scanning and storage of pathology slides - has opened up new possibilities for health care in recent years, particularly in the opportunities it brings for artificial intelligence (Al)-driven research. Recognising, however, that there is little scholarly debate on the ethics of digital pathology when used for Al research, this paper summarises what it sees as four key ethical issues to consider when deploying Al infrastructures in pathology, namely, privacy, choice, equity, and trust. The themes are inspired from the authors experience grappling with the challenge of deploying an ethical digital pathology infrastructure to support Al research as part of the National Pathology Imaging Cooperative (NPIC), a collaborative of universities, hospital trusts, and industry partners largely located across the North of England. Though focusing on the UK case, internationally, few pathology departments have gone fully digital, and so the themes developed here offer a heuristic for ethical reflection for other departments currently making a similar transition or planning to do so in the future. We conclude by promoting the need for robust public governance mechanisms in Al-driven digital pathology.
  •  
5.
  • Thomas, Zoë A., et al. (författare)
  • Tipping elements and amplified polar warming during the Last Interglacial
  • 2020
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791. ; 233
  • Forskningsöversikt (refereegranskat)abstract
    • Irreversible shifts of large-scale components of the Earth system (so-called ‘tipping elements’) on policy-relevant timescales are a major source of uncertainty for projecting the impacts of future climate change. The high latitudes are particularly vulnerable to positive feedbacks that amplify change through atmosphere-ocean-ice interactions. Unfortunately, the short instrumental record does not capture the full range of past or projected climate scenarios (a situation particularly acute in the high latitudes). Natural archives from past periods warmer than present day, however, can be used to explore drivers and responses to forcing, and provide data against which to test models, thereby offering insights into the future. The Last Interglacial (129–116,000 years before present) — the warmest interglacial of the last 800,000 years — was the most recent period during which global temperatures were comparable with low-end 21st Century projections (up to 2 °C warmer, with temperature increase amplified over polar latitudes), providing a potentially useful analogue for future change. Substantial environmental changes happened during this time. Here we synthesise the nature and timing of potential high-latitude tipping elements during the Last Interglacial, including sea ice, extent of the boreal forest, permafrost, ocean circulation, and ice sheets/sea level. We also review the thresholds and feedbacks that likely operated through this period. Notably, substantial ice mass loss from Greenland, the West Antarctic, and possibly sectors of the East Antarctic drove a 6–9 m rise in global sea level. This was accompanied by reduced summer sea-ice extent, poleward-extended boreal forest, and reduced areas of permafrost. Despite current chronological uncertainties, we find that tipping elements in the high latitudes all experienced rapid and abrupt change (within 1–2 millennia of each other) across both hemispheres, while recovery to prior conditions took place over multi-millennia. Our synthesis demonstrates important feedback loops between tipping elements, amplifying polar and global change during the Last Interglacial. The high sensitivity and tight interconnections between polar tipping elements suggests that they could exhibit similar thresholds of vulnerability in the future, particularly if the aspirations of the Paris Agreement are not met.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy