SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McKay James D) ;pers:(Le Marchand Loïc)"

Sökning: WFRF:(McKay James D) > Le Marchand Loïc

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sampson, Joshua N., et al. (författare)
  • Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for 13 Cancer Types
  • 2015
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 107:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Studies of related individuals have consistently demonstrated notable familial aggregation of cancer. We aim to estimate the heritability and genetic correlation attributable to the additive effects of common single-nucleotide polymorphisms (SNPs) for cancer at 13 anatomical sites. Methods: Between 2007 and 2014, the US National Cancer Institute has generated data from genome-wide association studies (GWAS) for 49 492 cancer case patients and 34 131 control patients. We apply novel mixed model methodology (GCTA) to this GWAS data to estimate the heritability of individual cancers, as well as the proportion of heritability attributable to cigarette smoking in smoking-related cancers, and the genetic correlation between pairs of cancers. Results: GWAS heritability was statistically significant at nearly all sites, with the estimates of array-based heritability, h(l)(2), on the liability threshold (LT) scale ranging from 0.05 to 0.38. Estimating the combined heritability of multiple smoking characteristics, we calculate that at least 24% (95% confidence interval [CI] = 14% to 37%) and 7% (95% CI = 4% to 11%) of the heritability for lung and bladder cancer, respectively, can be attributed to genetic determinants of smoking. Most pairs of cancers studied did not show evidence of strong genetic correlation. We found only four pairs of cancers with marginally statistically significant correlations, specifically kidney and testes (rho = 0.73, SE = 0.28), diffuse large B-cell lymphoma (DLBCL) and pediatric osteosarcoma (rho = 0.53, SE = 0.21), DLBCL and chronic lymphocytic leukemia (CLL) (rho = 0.51, SE = 0.18), and bladder and lung (rho = 0.35, SE = 0.14). Correlation analysis also indicates that the genetic architecture of lung cancer differs between a smoking population of European ancestry and a nonsmoking Asian population, allowing for the possibility that the genetic etiology for the same disease can vary by population and environmental exposures. Conclusion: Our results provide important insights into the genetic architecture of cancers and suggest new avenues for investigation.
  •  
2.
  • Ji, Xuemei, et al. (författare)
  • Protein-altering germline mutations implicate novel genes related to lung cancer development
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Few germline mutations are known to affect lung cancer risk. We performed analyses of rare variants from 39,146 individuals of European ancestry and investigated gene expression levels in 7,773 samples. We find a large-effect association with an ATM L2307F (rs56009889) mutation in adenocarcinoma for discovery (adjusted Odds Ratio=8.82, P=1.18x10(-15)) and replication (adjusted OR=2.93, P=2.22x10(-3)) that is more pronounced in females (adjusted OR=6.81 and 3.19 and for discovery and replication). We observe an excess loss of heterozygosity in lung tumors among ATM L2307F allele carriers. L2307F is more frequent (4%) among Ashkenazi Jewish populations. We also observe an association in discovery (adjusted OR=2.61, P=7.98x10(-22)) and replication datasets (adjusted OR=1.55, P=0.06) with a loss-of-function mutation, Q4X (rs150665432) of an uncharacterized gene, KIAA0930. Our findings implicate germline genetic variants in ATM with lung cancer susceptibility and suggest KIAA0930 as a novel candidate gene for lung cancer risk. In lung cancer, relatively few germline mutations are known to impact risk. Here the authors looked at rare variants in 39,146 individuals and find novel germline mutations associated with risk, as well as implicating ATM and a new candidate gene for lung cancer risk.
  •  
3.
  • Kachuri, Linda, et al. (författare)
  • Fine mapping of chromosome 5p15.33 based on a targeted deep sequencing and high density genotyping identifies novel lung cancer susceptibility loci
  • 2016
  • Ingår i: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 37:1, s. 96-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromosome 5p15.33 has been identified as a lung cancer susceptibility locus, however the underlying causal mechanisms were not fully elucidated. Previous fine-mapping studies of this locus have relied on imputation or investigated a small number of known, common variants. This study represents a significant advance over previous research by investigating a large number of novel, rare variants, as well as their underlying mechanisms through telomere length. Variants for this fine-mapping study were identified through a targeted deep sequencing (average depth of coverage greater than 4000x) of 576 individuals. Subsequently, 4652 SNPs, including 1108 novel SNPs, were genotyped in 5164 cases and 5716 controls of European ancestry. After adjusting for known risk loci, rs2736100 and rs401681, we identified a new, independent lung cancer susceptibility variant in LPCAT1: rs139852726 (OR = 0.46, P = 4.73x10(-9)), and three new adenocarcinoma risk variants in TERT: rs61748181 (OR = 0.53, P = 2.64x10(-6)), rs112290073 (OR = 1.85, P = 1.27x10(-5)), rs138895564 (OR = 2.16, P = 2.06x10(-5); among young cases, OR = 3.77, P = 8.41x10(-4)). In addition, we found that rs139852726 (P = 1.44x10(-3)) was associated with telomere length in a sample of 922 healthy individuals. The gene-based SKAT-O analysis implicated TERT as the most relevant gene in the 5p15.33 region for adenocarcinoma (P = 7.84x10(-7)) and lung cancer (P = 2.37x10(-5)) risk. In this largest fine-mapping study to investigate a large number of rare and novel variants within 5p15.33, we identified novel lung and adenocarcinoma susceptibility loci with large effects and provided support for the role of telomere length as the potential underlying mechanism.
  •  
4.
  • Li, Yafang, et al. (författare)
  • Lung cancer in ever- and never-smokers : findings from multi-population GWAS studies
  • 2024
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association For Cancer Research (AACR). - 1055-9965 .- 1538-7755. ; 33:3, s. 389-399
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Clinical, molecular, and genetic epidemiology studies displayed remarkable differences between ever- and never-smoking lung cancer.METHODS: We conducted a stratified multi-population (European, East Asian, and African descent) association study on 44,823 ever-smokers and 20,074 never-smokers to identify novel variants that were missed in the non-stratified analysis. Functional analysis including expression quantitative trait loci (eQTL) colocalization and DNA damage assays, and annotation studies were conducted to evaluate the functional roles of the variants. We further evaluated the impact of smoking quantity on lung cancer risk for the variants associated with ever-smoking lung cancer.RESULTS: Five novel independent loci, GABRA4, intergenic region 12q24.33, LRRC4C, LINC01088, and LCNL1 were identified with the association at two or three populations (P < 5 × 10-8). Further functional analysis provided multiple lines of evidence suggesting the variants affect lung cancer risk through excessive DNA damage (GABRA4) or cis-regulation of gene expression (LCNL1). The risk of variants from 12 independent regions, including the well-known CHRNA5, associated with ever-smoking lung cancer was evaluated for never-smokers, light-smokers (packyear ≤ 20), and moderate-to-heavy-smokers (packyear > 20). Different risk patterns were observed for the variants among the different groups by smoking behavior.CONCLUSIONS: We identified novel variants associated with lung cancer in only ever- or never-smoking groups that were missed by prior main-effect association studies. IMPACT: Our study highlights the genetic heterogeneity between ever- and never-smoking lung cancer and provides etiologic insights into the complicated genetic architecture of this deadly cancer.
  •  
5.
  • Lindström, Sara, et al. (författare)
  • Genome-wide analyses characterize shared heritability among cancers and identify novel cancer susceptibility regions
  • 2023
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 115:6, s. 712-732
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The shared inherited genetic contribution to risk of different cancers is not fully known. In this study, we leverage results from 12 cancer genome-wide association studies (GWAS) to quantify pairwise genome-wide genetic correlations across cancers and identify novel cancer susceptibility loci.METHODS: We collected GWAS summary statistics for 12 solid cancers based on 376 759 participants with cancer and 532 864 participants without cancer of European ancestry. The included cancer types were breast, colorectal, endometrial, esophageal, glioma, head and neck, lung, melanoma, ovarian, pancreatic, prostate, and renal cancers. We conducted cross-cancer GWAS and transcriptome-wide association studies to discover novel cancer susceptibility loci. Finally, we assessed the extent of variant-specific pleiotropy among cancers at known and newly identified cancer susceptibility loci.RESULTS: We observed widespread but modest genome-wide genetic correlations across cancers. In cross-cancer GWAS and transcriptome-wide association studies, we identified 15 novel cancer susceptibility loci. Additionally, we identified multiple variants at 77 distinct loci with strong evidence of being associated with at least 2 cancer types by testing for pleiotropy at known cancer susceptibility loci.CONCLUSIONS: Overall, these results suggest that some genetic risk variants are shared among cancers, though much of cancer heritability is cancer-specific and thus tissue-specific. The increase in statistical power associated with larger sample sizes in cross-disease analysis allows for the identification of novel susceptibility regions. Future studies incorporating data on multiple cancer types are likely to identify additional regions associated with the risk of multiple cancer types.
  •  
6.
  • McKay, James D., et al. (författare)
  • Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes
  • 2017
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 49:7, s. 1126-1132
  • Tidskriftsartikel (refereegranskat)abstract
    • Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genomewide association study (GWAS) analysis of lung cancer in 29,266 cases and 56,450 controls. We identified 18 susceptibility loci achieving genome-wide significance, including 10 new loci. The new loci highlight the striking heterogeneity in genetic susceptibility across the histological subtypes of lung cancer, with four loci associated with lung cancer overall and six loci associated with lung adenocarcinoma. Gene expression quantitative trait locus (eQTL) analysis in 1,425 normal lung tissue samples highlights RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer.
  •  
7.
  • McKay, James D., et al. (författare)
  • Vitamin D Receptor Polymorphisms and Breast Cancer Risk: Results from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium
  • 2009
  • Ingår i: Cancer Epidemiology Biomarkers & Prevention. - 1538-7755. ; 18:1, s. 297-305
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Vitamin D is hypothesized to lower the risk of breast cancer by inhibiting cell proliferation via the nuclear vitamin D receptor (VDR). Two common single nucleotide polymorphisms (SNP) in the VDR gene (VDR), rs154441.0 (BsmI), and rs2228570 (FokI), have been inconsistently associated with breast cancer risk. Increased risk has been reported for the FokIff genotype, which encodes a less transcriptionally active isoform of VDR, and reduced risk has been reported for the BsmI BB genotype, a SNP in strong linkage disequilibrium with a 3'-untranslated region, which may influence VDR mRNA stability. Methods: We pooled data from 6 prospective studies in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium to examine associations between these SNPs and breast cancer among >6,300 cases and 8,100 controls for each SNP using conditional logistic regression. Results: The odds ratio (OR) for the rs2228570 (FokI) ff versus FF genotype in the overall population was statistically significantly elevated [OR, 1-1.6; 95% confidence interval (95% CI), 1.04-1.28] but was weaker once data from the cohort with previously published positive findings were removed (OR, 1.1.0; 95% CI, 0.981.24). No association was noted between rs1544410 (Bsm I) BB and breast cancer risk overall (OR, 0.98; 95% CI, 0.89-1.09), but the BB genotype was associated with a significantly lower risk of advanced breast cancer (OR, 0.74; 95% CI, 0.60-0.92). Conclusions: Although the evidence for independent contributions of these variants to breast cancer susceptibility remains equivocal, future large studies should integrate genetic variation in VDR with biomarkers of vitamin D status. (Cancer Epidemiol Biomarkers Prev 2009;18(1):297-305)
  •  
8.
  • Bosse, Yohan, et al. (författare)
  • Transcriptome-wide association study reveals candidate causal genes for lung cancer
  • 2020
  • Ingår i: International Journal of Cancer. - : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 146:7, s. 1862-1878
  • Tidskriftsartikel (refereegranskat)abstract
    • We have recently completed the largest GWAS on lung cancer including 29,266 cases and 56,450 controls of European descent. The goal of our study has been to integrate the complete GWAS results with a large‐scale expression quantitative trait loci (eQTL) mapping study in human lung tissues (n = 1,038) to identify candidate causal genes for lung cancer. We performed transcriptome‐wide association study (TWAS) for lung cancer overall, by histology (adenocarcinoma, squamous cell carcinoma and small cell lung cancer) and smoking subgroups (never‐ and ever‐smokers). We performed replication analysis using lung data from the Genotype‐Tissue Expression (GTEx) project. DNA damage assays were performed in human lung fibroblasts for selected TWAS genes. As expected, the main TWAS signal for all histological subtypes and ever‐smokers was on chromosome 15q25. The gene most strongly associated with lung cancer at this locus using the TWAS approach was IREB2 (pTWAS = 1.09E−99), where lower predicted expression increased lung cancer risk. A new lung adenocarcinoma susceptibility locus was revealed on 9p13.3 and associated with higher predicted expression of AQP3 (pTWAS = 3.72E−6). Among the 45 previously described lung cancer GWAS loci, we mapped candidate target gene for 17 of them. The association AQP3‐adenocarcinoma on 9p13.3 was replicated using GTEx (pTWAS = 6.55E−5). Consistent with the effect of risk alleles on gene expression levels, IREB2 knockdown and AQP3 overproduction promote endogenous DNA damage. These findings indicate genes whose expression in lung tissue directly influences lung cancer risk.
  •  
9.
  • Dai, Juncheng, et al. (författare)
  • Systematic analyses of regulatory variants in DNase I hypersensitive sites identified two novel lung cancer susceptibility loci
  • 2019
  • Ingår i: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 40:3, s. 432-440
  • Tidskriftsartikel (refereegranskat)abstract
    • DNase I hypersensitive sites (DHS) are abundant in regulatory elements, such as promoter, enhancer and transcription factor binding sites. Many studies have revealed that disease-associated variants were concentrated in DHS-related regions. However, limited studies are available on the roles of DHS-related variants in lung cancer. In this study, we performed a large-scale case-control study with 20 871 lung cancer cases and 15 971 controls to evaluate the associations between regulatory genetic variants in DHS and lung cancer susceptibility. The expression quantitative trait loci (eQTL) analysis and pathway-enrichment analysis were performed to identify the possible target genes and pathways. In addition, we performed motif-based analysis to explore the lung-cancer-related motifs using sequence kernel association test. Two novel variants, rs186332 in 20q13.3 (C>T, odds ratio [OR] = 1.17, 95% confidence interval [95% CI]: 1.10-1.24, P = 8.45 × 10-7) and rs4839323 in 1p13.2 (T>C, OR = 0.92, 95% CI: 0.89-0.95, P = 1.02 × 10-6) showed significant association with lung cancer risk. The eQTL analysis suggested that these two SNPs might regulate the expression of MRGBP and SLC16A1, respectively. What's more, the expression of both MRGBP and SLC16A1 was aberrantly elevated in lung tumor tissues. The motif-based analysis identified 10 motifs related to the risk of lung cancer (P < 1.71 × 10-4). Our findings suggested that variants in DHS might modify lung cancer susceptibility through regulating the expression of surrounding genes. This study provided us a deeper insight into the roles of DHS-related genetic variants for lung cancer.
  •  
10.
  • Garcia-Closas, Montserrat, et al. (författare)
  • Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics
  • 2008
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 4:4, s. e1000054-
  • Tidskriftsartikel (refereegranskat)abstract
    • A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs) in five loci (fibroblast growth receptor 2 (FGFR2), trinucleotide repeat containing 9 (TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte-specific protein 1 (LSP1)) associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival in 13,527 cases from 13 studies. All participants were of European or Asian origin. rs2981582 in FGFR2 was more strongly related to ER-positive (per-allele OR (95%CI) = 1.31 (1.27-1.36)) than ER-negative (1.08 (1.03-1.14)) disease (P for heterogeneity = 10(-13)). This SNP was also more strongly related to PR-positive, low grade and node positive tumors (P = 10(-5), 10(-8), 0.013, respectively). The association for rs13281615 in 8q24 was stronger for ER-positive, PR-positive, and low grade tumors (P = 0.001, 0.011 and 10(-4), respectively). The differences in the associations between SNPs in FGFR2 and 8q24 and risk by ER and grade remained significant after permutation adjustment for multiple comparisons and after adjustment for other tumor characteristics. Three SNPs (rs2981582, rs3803662, and rs889312) showed weak but significant associations with ER-negative disease, the strongest association being for rs3803662 in TNRC9 (1.14 (1.09-1.21)). rs13281615 in 8q24 was associated with an improvement in survival after diagnosis (per-allele HR = 0.90 (0.83-0.97). The association was attenuated and non-significant after adjusting for known prognostic factors. Our findings show that common genetic variants influence the pathological subtype of breast cancer and provide further support for the hypothesis that ER-positive and ER-negative disease are biologically distinct. Understanding the etiologic heterogeneity of breast cancer may ultimately result in improvements in prevention, early detection, and treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy