SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McVey Mark J) "

Sökning: WFRF:(McVey Mark J)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kapur, Rick, et al. (författare)
  • Gastrointestinal microbiota contributes to the development of murine transfusion-related acute lung injury
  • 2018
  • Ingår i: Blood Advances. - American Society of Hematology. - 2473-9529. ; 2:13, s. 1651-1663
  • Tidskriftsartikel (refereegranskat)abstract
    • Transfusion-related acute lung injury (TRALI) is a syndrome of respiratory distress upon blood transfusion and is the leading cause of transfusion-related fatalities. Whether the gut microbiota plays any role in the development of TRALI is currently unknown. We observed that untreated barrier-free (BF) mice suffered from severe antibody-mediated acute lung injury, whereas the more sterile housed specific pathogen-free (SPF) mice and gut flora-depleted BF mice were both protected from lung injury. The prevention of TRALI in the SPF mice and gut flora-depleted BF mice was associated with decreased plasma macrophage inflammatory protein-2 levels as well as decreased pulmonary neutrophil accumulation. DNA sequencing of amplicons of the 16S ribosomal RNA gene revealed a varying gastrointestinal bacterial composition between BF and SPF mice. BF fecal matter transferred into SPF mice significantly restored TRALI susceptibility in SPF mice. These data reveal a link between the gut flora composition and the development of antibody-mediated TRALI in mice. Assessment of gut microbial composition may help in TRALI risk assessment before transfusion.
  •  
3.
  • Kapur, Rick, et al. (författare)
  • T regulatory cells and dendritic cells protect against transfusion-related acute lung injury via IL-10
  • 2017
  • Ingår i: Blood. - American Society of Hematology. - 1528-0020. ; 129:18, s. 2557-2569
  • Tidskriftsartikel (refereegranskat)abstract
    • Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related fatalities and is characterized by acute respiratory distress following blood transfusion. Donor antibodies are frequently involved; however, the pathogenesis and protective mechanisms in the recipient are poorly understood, and specific therapies are lacking. Using newly developed murine TRALI models based on injection of anti-major histocompatibility complex class I antibodies, we found CD4+CD25+FoxP3+ T regulatory cells (Tregs) and CD11c+ dendritic cells (DCs) to be critical effectors that protect against TRALI. Treg or DC depletion in vivo resulted in aggravated antibody-mediated acute lung injury within 90 minutes with 60% mortality upon DC depletion. In addition, resistance to antibody-mediated TRALI was associated with increased interleukin-10 (IL-10) levels, and IL-10 levels were found to be decreased in mice suffering from TRALI. Importantly, IL-10 injection completely prevented and rescued the development of TRALI in mice and may prove to be a promising new therapeutic approach for alleviating lung injury in this serious complication of transfusion.
  •  
4.
  •  
5.
  • McVey, Mark J, et al. (författare)
  • Microparticles as biomarkers of lung disease : enumeration in biological fluids using lipid bilayer microspheres
  • 2016
  • Ingår i: American Journal of Physiology - Lung Cellular and Molecular Physiology. - American Physiological Society. - 1522-1504. ; 310:9, s. 14-802
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular vesicles, specifically microparticles (MPs), are rapidly gaining attention for their capacity to act as biomarkers for diagnosis, prognosis, or responsiveness to therapy in lung disease, in keeping with the concept of precision medicine. However, MP analysis by high-sensitivity flow cytometry (FCM) is complicated by a lack of accurate means for MP enumeration. To address this gap, we report here an enhanced FCM MP gating and enumeration technique based on the use of novel engineered lipid bilayer microspheres (LBMs). By comparison of LBM-based MP enumeration with conventional bead- or fluorescent-based FCM enumeration techniques and a gravimetric consumption gold standard, we found LBMs to be superior to commercial bead preparations, showing the smallest fixed bias and limits of agreement in Bland Altman analyses. LBMs had simultaneous capacity to aid FCM enumeration of MPs in plasma, BAL, and cell culture supernatants. LBM enumeration detected differences in MP counts in mice exposed to intraperitoneal lipopolysaccharide or saline. LBMs provided for 1) higher sensitivity for gating MPs populations, 2) reduced background within MP gates, 3) more appropriate size, and 4) an inexpensive alternative amenable to different fluorescent tags. LBM-based MP enumeration was useful for a series of different FCM systems assessed, whereas LBM gating benefited high- but not low-sensitivity FCM systems compared with fluorescence gating. By offering exclusive advantages over current means of gating and enumerating MPs, LBMs are uniquely suited to realizing the potential of MPs as biomarkers in biological lung fluids and facilitating precision medicine in lung disease.
  •  
6.
  • Semple, John W, et al. (författare)
  • Targeting Transfusion-Related Acute Lung Injury: The Journey From Basic Science to Novel Therapies
  • 2018
  • Ingår i: Critical Care Medicine. - Lippincott Williams & Wilkins. - 1530-0293. ; 46:5, s. 452-458
  • Forskningsöversikt (refereegranskat)abstract
    • Objectives: Transfusion-related acute lung injury is characterized by the onset of respiratory distress and acute lung injury following blood transfusion, but its pathogenesis remains poorly understood. Generally, a two-hit model is presumed to underlie transfusion-related acute lung injury with the first hit being risk factors present in the transfused patient (such as inflammation), whereas the second hit is conveyed by factors in the transfused donor blood (such as antileukocyte antibodies). At least 80% of transfusion-related acute lung injury cases are related to the presence of donor antibodies such as antihuman leukocyte or antihuman neutrophil antibodies. The remaining cases may be related to nonantibody-mediated factors such as biolipids or components related to storage and ageing of the transfused blood cells. At present, transfusion-related acute lung injury is the leading cause of transfusion-related fatalities and no specific therapy is clinically available. In this article, we critically appraise and discuss recent preclinical (bench) insights related to transfusion-related acute lung injury pathogenesis and their therapeutic potential for future use at the patients’ bedside in order to combat this devastating and possibly fatal complication of transfusion.Data Sources: We searched the PubMed database (until August 22, 2017).Study Selection: Using terms: “Transfusion-related acute lung injury,” “TRALI,” “TRALI and therapy,” “TRALI pathogenesis.”Data Extraction: English-written articles focusing on transfusion-related acute lung injury pathogenesis, with potential therapeutic implications, were extracted.Data Synthesis: We have identified potential therapeutic approaches based on the literature.Conclusions: We propose that the most promising therapeutic strategies to explore are interleukin-10 therapy, down-modulating C-reactive protein levels, targeting reactive oxygen species, or blocking the interleukin-8 receptors; all focused on the transfused recipient. In the long-run, it may perhaps also be advantageous to explore other strategies aimed at the transfused recipient or aimed toward the blood product, but these will require more validation and confirmation first.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy