SwePub
Sök i SwePub databas

  form:Ext_t

Träfflista för sökning "WFRF:(Medland Sarah E.) "

form:Search_simp_t: WFRF:(Medland Sarah E.)

  • navigation:Result_t 1-10 navigation:of_t 36
hitlist:Modify_result_t
   
hitlist:Enumeration_thitlist:Reference_thitlist:Reference_picture_thitlist:Find_Mark_t
1.
  • Locke, Adam E, et al. (creator_code:aut_t)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • record:In_t: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
2.
  • Turcot, Valerie, et al. (creator_code:aut_t)
  • Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity
  • 2018
  • record:In_t: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:1, s. 26-41
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are similar to 10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed similar to 7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
  •  
3.
  •  
4.
  • Hibar, Derrek P., et al. (creator_code:aut_t)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • record:In_t: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
5.
  • Okbay, Aysu, et al. (creator_code:aut_t)
  • Genome-wide association study identifies 74 loci associated with educational attainment
  • 2016
  • record:In_t: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 533:7604, s. 539-542
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals(1). Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample(1,2) of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.
  •  
6.
  • Thompson, Paul M., et al. (creator_code:aut_t)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • record:In_t: BRAIN IMAGING BEHAV. - : Springer Science and Business Media LLC. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
7.
  • Berndt, Sonja I., et al. (creator_code:aut_t)
  • Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture
  • 2013
  • record:In_t: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:5, s. 501-U69
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.
  •  
8.
  • Dima, Danai, et al. (creator_code:aut_t)
  • Subcortical volumes across the lifespan : Data from 18,605 healthy individuals aged 3-90 years.
  • 2022
  • record:In_t: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 43:1, s. 452-469
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.
  •  
9.
  • Frangou, Sophia, et al. (creator_code:aut_t)
  • Cortical thickness across the lifespan : Data from 17,075 healthy individuals aged 3-90 years
  • 2022
  • record:In_t: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 431-451
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
  •  
10.
  • Jelenkovic, Aline, et al. (creator_code:aut_t)
  • Zygosity Differences in Height and Body Mass Index of Twins From Infancy to Old Age : A Study of the CODATwins Project
  • 2015
  • record:In_t: Twin Research and Human Genetics. - : Cambridge University Press. - 1832-4274 .- 1839-2628. ; 18:5, s. 557-570
  • swepub:Mat_article_t (swepub:level_refereed_t)abstract
    • A trend toward greater body size in dizygotic (DZ) than in monozygotic (MZ) twins has been suggested by some but not all studies, and this difference may also vary by age. We analyzed zygosity differences in mean values and variances of height and body mass index (BMI) among male and female twins from infancy to old age. Data were derived from an international database of 54 twin cohorts participating in the COllaborative project of Development of Anthropometrical measures in Twins (CODATwins), and included 842,951 height and BMI measurements from twins aged 1 to 102 years. The results showed that DZ twins were consistently taller than MZ twins, with differences of up to 2.0 cm in childhood and adolescence and up to 0.9 cm in adulthood. Similarly, a greater mean BMI of up to 0.3 kg/m(2) in childhood and adolescence and up to 0.2 kg/m(2) in adulthood was observed in DZ twins, although the pattern was less consistent. DZ twins presented up to 1.7% greater height and 1.9% greater BMI than MZ twins; these percentage differences were largest in middle and late childhood and decreased with age in both sexes. The variance of height was similar in MZ and DZ twins at most ages. In contrast, the variance of BMI was significantly higher in DZ than in MZ twins, particularly in childhood. In conclusion, DZ twins were generally taller and had greater BMI than MZ twins, but the differences decreased with age in both sexes.
  •  
Skapa referenser, mejla, bekava och länka
  • navigation:Result_t 1-10 navigation:of_t 36
swepub:Mat_t
swepub:mat_article_t (36)
swepub:Level_t
swepub:level_refereed_t (36)
swepub:Hitlist_author_t
Medland, Sarah E (36)
Martin, Nicholas G. (30)
Boomsma, Dorret I. (23)
Montgomery, Grant W. (22)
Hottenga, Jouke-Jan (17)
Willemsen, Gonneke (16)
deldatabas:search_more_t
Teumer, Alexander (14)
de Geus, Eco J. C. (13)
Loos, Ruth J F (13)
Kaprio, Jaakko (12)
Uitterlinden, André ... (12)
Agartz, Ingrid (11)
Andreassen, Ole A (11)
Stefansson, Kari (11)
van Duijn, Cornelia ... (10)
Magnusson, Patrik K ... (10)
Pedersen, Nancy L (10)
Mangino, Massimo (10)
Gudnason, Vilmundur (10)
Ophoff, Roel A (10)
Westlye, Lars T (9)
Thompson, Paul M (9)
Boehnke, Michael (9)
Thorsteinsdottir, Un ... (9)
Nyholt, Dale R. (9)
Spector, Tim D. (9)
Metspalu, Andres (9)
Deary, Ian J (9)
Homuth, Georg (9)
Hofman, Albert (9)
Hayward, Caroline (9)
Crespo-Facorro, Bene ... (9)
Tordesillas-Gutierre ... (9)
Esko, Tonu (9)
Lindgren, Cecilia M. (9)
Ehrlich, Stefan (9)
Ching, Christopher R ... (8)
Rudan, Igor (8)
Wareham, Nicholas J. (8)
McCarthy, Mark I (8)
Hakonarson, Hakon (8)
Harris, Tamara B (8)
Jahanshad, Neda (8)
Sachdev, Perminder S ... (8)
Frayling, Timothy M (8)
Heath, Andrew C. (8)
Snieder, Harold (8)
Morris, Andrew P. (8)
de Zubicaray, Greig ... (8)
Espeseth, Thomas (8)
deldatabas:search_less_t
swepub:Hitlist_uni_t
swepub_uni:ki_t (16)
swepub_uni:umu_t (14)
swepub_uni:uu_t (12)
swepub_uni:lu_t (7)
swepub_uni:gu_t (5)
swepub_uni:oru_t (5)
deldatabas:search_more_t
swepub_uni:hj_t (3)
swepub_uni:his_t (2)
swepub_uni:miun_t (1)
deldatabas:search_less_t
hitlist:Language_t
language:Eng_t (36)
hitlist:HSV_t
hsv:Cat_3_t (27)
hsv:Cat_1_t (3)
hsv:Cat_5_t (2)

hitlist:Year_t

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt tools:Close_t

tools:Permalink_label_t