SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Meir Patrick) "

Sökning: WFRF:(Meir Patrick)

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Lin, Yan-Shih, et al. (författare)
  • Optimal stomatal behaviour around the world
  • 2015
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 5, s. 459-464
  • Tidskriftsartikel (refereegranskat)abstract
    • Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a globalscale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here,we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model1 and the leaf and wood economics spectrum2,3.We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.
  •  
3.
  • Lin, Yan-Shih, et al. (författare)
  • Optimal stomatal behaviour around the world
  • 2015
  • Ingår i: Nature Climate Change. - 1758-6798 .- 1758-678X. ; 5:5, s. 459-464
  • Tidskriftsartikel (refereegranskat)abstract
    • Stomatal conductance (g(s)) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of g(s) in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of g(s) that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed g(s) obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model(1) and the leaf and wood economics spectrum(2,3). We also demonstrate a global relationship with climate. These findin g(s) provide a robust theoretical framework for understanding and predicting the behaviour of g(s) across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.
  •  
4.
  • Malhi, Yadvinder, et al. (författare)
  • The Global Ecosystems Monitoring network : Monitoring ecosystem productivity and carbon cycling across the tropics
  • 2021
  • Ingår i: Biological Conservation. - : Elsevier BV. - 0006-3207. ; 253
  • Tidskriftsartikel (refereegranskat)abstract
    • A rich understanding of the productivity, carbon and nutrient cycling of terrestrial ecosystems is essential in the context of understanding, modelling and managing the future response of the biosphere to global change. This need is particularly acute in tropical ecosystems, home to over 60% of global terrestrial productivity, over half of planetary biodiversity, and hotspots of anthropogenic pressure. In recent years there has been a surge of activity in collecting data on the carbon cycle, productivity, and plant functional traits of tropical ecosystems, most intensively through the Global Ecosystems Monitoring network (GEM). The GEM approach provides valuable insights by linking field-based ecosystem ecology with the needs of Earth system science. In this paper, we review and synthesize the context, history and recent scientific output from the GEM network. Key insights have emerged on the spatial and temporal variability of ecosystem productivity and on the role of temperature and drought stress on ecosystem function and resilience. New work across the network is now linking carbon cycling to nutrient cycling and plant functional traits, and subsequently to airborne remote sensing. We discuss some of the novel emerging patterns and practical and methodological challenges of this approach, and examine current and possible future directions, both within this network and as lessons for a more general terrestrial ecosystem observation scheme.
  •  
5.
  • Doughty, Christopher E., et al. (författare)
  • What controls variation in carbon use efficiency among Amazonian tropical forests?
  • 2018
  • Ingår i: Biotropica. - : Wiley. - 0006-3606. ; 50:1, s. 16-25
  • Tidskriftsartikel (refereegranskat)abstract
    • Why do some forests produce biomass more efficiently than others? Variations in Carbon Use Efficiency (CUE: total Net Primary Production (NPP)/ Gross Primary Production (GPP)) may be due to changes in wood residence time (Biomass/NPPwood), temperature, or soil nutrient status. We tested these hypotheses in 14, one ha plots across Amazonian and Andean forests where we measured most key components of net primary production (NPP: wood, fine roots, and leaves) and autotrophic respiration (Ra; wood, rhizosphere, and leaf respiration). We found that lower fertility sites were less efficient at producing biomass and had higher rhizosphere respiration, indicating increased carbon allocation to belowground components. We then compared wood respiration to wood growth and rhizosphere respiration to fine root growth and found that forests with residence times <40 yrs had significantly lower maintenance respiration for both wood and fine roots than forests with residence times >40 yrs. A comparison of rhizosphere respiration to fine root growth showed that rhizosphere growth respiration was significantly greater at low fertility sites. Overall, we found that Amazonian forests produce biomass less efficiently in stands with residence times >40 yrs and in stands with lower fertility, but changes to long-term mean annual temperatures do not impact CUE.
  •  
6.
  • Fisher, Janet A., et al. (författare)
  • Strengthening conceptual foundations: analysing frameworks for ecosystem services and poverty alleviation research
  • 2013
  • Ingår i: Global Environmental Change. - 0959-3780 .- 1872-9495. ; 23:5, s. 1098-1111
  • Tidskriftsartikel (refereegranskat)abstract
    • A research agenda is currently developing around the linkages between ecosystem services and poverty alleviation. It is therefore timely to consider which conceptual frameworks can best support research at this nexus. Our review of frameworks synthesises existing research on poverty/environment linkages that should not be overlooked with the adoption of the topical language of ecosystem services. A total of nine conceptual frameworks were selected on the basis of relevance. These were reviewed and compared to assess their ability to illuminate the provision of ecosystem services, the condition, determinants and dynamics of poverty, and political economy factors that mediate the relationship between poverty and ecosystem services. The paper synthesises the key contributions of each of these frameworks, and the gaps they expose in one another, drawing out lessons that can inform emerging research. Research on poverty alleviation must recognize social differentiation, and be able to distinguish between constraints of access and constraints of aggregate availability of ecosystem services. Different frameworks also highlight important differences between categories of services, their pathways of production, and their contribution to poverty alleviation. Furthermore, we highlight that it is important to acknowledge the limits of ecosystem services for poverty alleviation, given evidence that ecosystem services tend to be more associated with poverty prevention than reduction. We conclude by reflecting on the relative merits of dynamic Social–Ecological Systems frameworks versus more static checklists, and suggest that research on ecosystem services and poverty alleviation would be well served by a new framework distilling insights from the frameworks we review.
  •  
7.
  • Girardin, Cécile A J, et al. (författare)
  • Seasonal trends of Amazonian rainforest phenology, net primary productivity, and carbon allocation
  • 2016
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 30:5, s. 700-715
  • Tidskriftsartikel (refereegranskat)abstract
    • The seasonality of solar irradiance and precipitation may regulate seasonal variations in tropical forests carbon cycling. Controversy remains over their importance as drivers of seasonal dynamics of net primary productivity in tropical forests. We use ground data from nine lowland Amazonian forest plots collected over 3 years to quantify the monthly primary productivity (NPP) of leaves, reproductive material, woody material, and fine roots over an annual cycle. We distinguish between forests that do not experience substantial seasonal moisture stress (“humid sites”) and forests that experience a stronger dry season (“dry sites”). We find that forests from both precipitation regimes maximize leaf NPP over the drier season, with a peak in production in August at both humid (mean 0.39 ± 0.03 Mg C ha−1 month−1 in July, n = 4) and dry sites (mean 0.49 ± 0.03 Mg C ha−1 month−1 in September, n = 8). We identify two distinct seasonal carbon allocation patterns (the allocation of NPP to a specific organ such as wood leaves or fine roots divided by total NPP). The forests monitored in the present study show evidence of either (i) constant allocation to roots and a seasonal trade-off between leaf and woody material or (ii) constant allocation to wood and a seasonal trade-off between roots and leaves. Finally, we find strong evidence of synchronized flowering at the end of the dry season in both precipitation regimes. Flower production reaches a maximum of 0.047 ± 0.013 and 0.031 ± 0.004 Mg C ha−1 month−1 in November, in humid and dry sites, respectively. Fruitfall production was staggered throughout the year, probably reflecting the high variation in varying times to development and loss of fruit among species.
  •  
8.
  • Heskel, Mary A., et al. (författare)
  • Convergence in the temperature response of leaf respiration across biomes and plant functional types
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:14, s. 3832-3837
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.
  •  
9.
  •  
10.
  • Huaraca Huasco, Walter, et al. (författare)
  • Fine root dynamics across pantropical rainforest ecosystems
  • 2021
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 27:15, s. 3657-3680
  • Tidskriftsartikel (refereegranskat)abstract
    • Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old-growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi-deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water-stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26
Typ av publikation
tidskriftsartikel (25)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (26)
Författare/redaktör
Meir, Patrick (22)
Malhi, Yadvinder (11)
Doughty, Christopher ... (8)
Girardin, Cecile A. ... (7)
Silva Espejo, Javier ... (7)
Phillips, Oliver L. (6)
visa fler...
Metcalfe, Daniel B. (6)
da Costa, Antonio C. ... (6)
Aragão, Luiz E. O. C ... (5)
Rowland, Lucy (5)
Araujo-Murakami, Ale ... (5)
Farfan Amezquita, Fi ... (5)
Bååth, Erland (4)
Huaraca Huasco, Walt ... (4)
del Aguila-Pasquel, ... (4)
Marthews, Toby R. (4)
Lin, Yan-Shih (4)
Linderson, Maj-Lena (3)
Eriksson, Elias, 195 ... (3)
Adu-Bredu, Stephen (3)
Moore, Sam (3)
Rogers, Alistair (3)
Schmidt, Peter (3)
Berenguer, Erika (3)
Tjoelker, Mark G (3)
Onoda, Yusuke (3)
Wang, Han (3)
Epperson, C. Neill (3)
Medlyn, Belinda E. (3)
Dennerstein, Lorrain ... (3)
Goldsmith, Gregory R ... (3)
Rocha, Wanderley (3)
Steiner, Meir (3)
Limousin, Jean Marc (3)
Reid, Robert (3)
Mencuccini, Maurizio (3)
Halbreich, Uriel (3)
Rapkin, Andrea (3)
Marimon, Beatriz S. (3)
Riutta, Terhi (3)
Rifai, Sami W. (3)
Huasco, Walter Huara ... (3)
O'Brien, Patrick Mic ... (3)
Brown, Candace (3)
Panay, Nicholas (3)
Pearlstein, Teri (3)
Studd, John (3)
Endicott, Jean (3)
Duursma, Remko A. (3)
Resco de Dios, Victo ... (3)
visa färre...
Lärosäte
Lunds universitet (14)
Göteborgs universitet (6)
Umeå universitet (6)
Sveriges Lantbruksuniversitet (5)
Uppsala universitet (4)
Stockholms universitet (1)
visa fler...
Karlstads universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (26)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (20)
Lantbruksvetenskap (6)
Medicin och hälsovetenskap (4)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy