SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mele F) ;lar1:(kth)"

Sökning: WFRF:(Mele F) > Kungliga Tekniska Högskolan

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schael, S, et al. (författare)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Forskningsöversikt (refereegranskat)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
2.
  • Weimer, James, et al. (författare)
  • Active actuator fault detection and diagnostics in HVAC systems
  • 2012
  • Ingår i: BuildSys '12 Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings. - New York, NY, USA : Association for Computing Machinery (ACM). - 9781450311700 ; , s. 107-114
  • Konferensbidrag (refereegranskat)abstract
    • This paper introduces a new method for performing actuator fault detection and diagnostics (FDD) in heating ventilation and air conditioning (HVAC) systems. The proposed actuator FDD strategy, for testing whether an actuator is stuck in a single position, uses a two-tier approach that includes a dynamic model-based detector and a fast-deciding steady-state detector. The model-based detector is formulated to provide detection performance that asymptotically bounds both the probability of miss and probability of false alarm. To provide a quick confirmation the actuator is working, the steady-state detector utilizes a goodness-of-fit detection strategy to decide if the measurements could be described by an actuator failure. An architecture is introduced that requires multiple steady-state detection experiments to decide that the measurements could be explained by an actuator failure before performing model-based detection. An experimental test bed using a the KTH Royal Institute of Technology campus HVAC system is described and used to evaluate the steady-state and model-based detectors. The experimental test bed is utilized to identify a building dynamics model, that is employed through monte carlo analysis, to characterize the detection performance of both the model-based detector and the steady-state detector.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy